Skip to main content

Designing Audio Feedback to Enhance Motion Perception in Virtual Reality

  • Conference paper
  • First Online:
Haptic and Audio Interaction Design (HAID 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13417))

Included in the following conference series:

  • 576 Accesses

Abstract

We present our study on the design and evaluation of sound samples for motion perception in a Virtual Reality (VR) application. In previous study we found our sound samples to be incoherent with the VR visual channel. In current research we designed four new samples and tested them adapting standard subjective evaluation protocols to our needs. Twenty participants participated to the study and rated each animation in Realism, Matching and Plausibility. Significant differences were found among the sounds and discussion rose on the need for realism in VR applications as well as users’ expectation and how it could influence their experience.

This work is supported by the EPSRC and AHRC Centre for Doctoral Training in Media and Arts Technology (EP/L01632X/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bech, S., Zacharov, N.: Perceptual Audio Evaluation-Theory, Method and Application: Bech/Perceptual Audio Evaluation-Theory, Method and Application. Wiley, Chichester (2006)

    Book  Google Scholar 

  2. Bosch, O.J., Revilla, M., DeCastellarnau, A., Weber, W.: Measurement reliability, validity, and quality of slider versus radio button scales in an online probability-based panel in Norway. Soc. Sci. Comput. Rev. 37(1), 119–132 (2019)

    Article  Google Scholar 

  3. Campos, J., Nusseck, H., Wallraven, C., Mohler, B., Bülthoff, H.: Visualization and (mis)perceptions in virtual reality. In: 10. Workshop Sichtsysteme: Visualisierung in der Simulationstechnik, pp. 10–14. Shaker (2007)

    Google Scholar 

  4. Carifio, J., Perla, R.J.: Ten common misunderstandings, misconceptions, persistent myths and urban legends about Likert scales and Likert response formats and their antidotes. J. Soc. Sci. 3(3), 106–116 (2007)

    Google Scholar 

  5. Clifford, R.M., Jung, S., Hoermann, S., Billinghurst, M., Lindeman, R.W.: Creating a stressful decision making environment for aerial firefighter training in virtual reality. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 181–189. IEEE, Osaka, March 2019

    Google Scholar 

  6. Dijk, E.O., Weffers-Albu, A., De Zeeuw, T.: A tactile actuation blanket to intensify movie experiences with personalised tactile effects. In: Demonstration Papers Proceedings 3rd International Conference on Intelligent Technologies for Interactive Entertainment (2009)

    Google Scholar 

  7. Dionisio, J.D.N., Iii, W.G.B., Gilbert, R.: 3D virtual worlds and the metaverse: current status and future possibilities. ACM Comput. Surv. 45(3), 1–38 (2013)

    Google Scholar 

  8. Farkhatdinov, I., Ouarti, N., Hayward, V.: Vibrotactile inputs to the feet can modulate vection. In: 2013 World Haptics Conference (WHC), pp. 677–681. IEEE (2013)

    Google Scholar 

  9. Funke, F.: A web experiment showing negative effects of slider scales compared to visual analogue scales and radio button scales. Soc. Sci. Comput. Rev. 34(2), 244–254 (2016)

    Article  Google Scholar 

  10. Grassini, S., Laumann, K., de Martin Topranin, V., Thorp, S.: Evaluating the effect of multi-sensory stimulations on simulator sickness and sense of presence during HMD-mediated VR experience. Ergonomics 64(12), 1532–1542 (2021)

    Article  Google Scholar 

  11. Harrington, C.M., et al.: Development and evaluation of a trauma decision-making simulator in Oculus virtual reality. Am. J. Surg. 215(1), 42–47 (2018)

    Article  Google Scholar 

  12. Joshi, A., Kale, S., Chandel, S., Pal, D.: Likert scale: explored and explained. Br. J. Appl. Sci. Technol. 7(4), 396–403 (2015)

    Article  Google Scholar 

  13. Kemeny, A.: From driving simulation to virtual reality. In: Proceedings of the 2014 Virtual Reality International Conference, pp. 1–5. ACM, Laval, April 2014

    Google Scholar 

  14. Keshavarz, B., Campos, J.L., Berti, S.: Vection lies in the brain of the beholder: EEG parameters as an objective measurement of vection. Front. Psychol. 6, 1581 (2015)

    Google Scholar 

  15. Malpica, S., Serrano, A., Allue, M., Bedia, M.G., Masia, B.: Crossmodal perception in virtual reality. Multimedia Tools Appl. 79, 3311–3331 (2019)

    Article  Google Scholar 

  16. Miller, J.: Channel interaction and the redundant-targets effect in bimodal divided attention. J. Exp. Psychol. 17(1), 10 (1991)

    Google Scholar 

  17. Moffat, D., Reiss, J.D.: Objective evaluations of synthesised environmental sounds. In: Proceedings of the 21st International Conference on Digital Audio Effects (DAFx 2018), Aveiro, Portugal, 4–8 September 2018, p. 8 (2018)

    Google Scholar 

  18. Moffat, D., Reiss, J.D.: Perceptual evaluation of synthesized sound effects. ACM Trans. Appl. Percept. 15(2), 1–19 (2018)

    Article  Google Scholar 

  19. Mottelson, A., Hornbæk, K.: Virtual reality studies outside the laboratory. In: Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, pp. 1–10. ACM, Gothenburg, November 2017

    Google Scholar 

  20. Neuendorf, M., Nagel, F.: Exploratory studies on perceptual stationarity in listening test-part I: real world signals from custom listening tests. In: Audio Engineering Society Convention, vol. 131. Audio Engineering Society (2011)

    Google Scholar 

  21. Ng, A.K.T., Chan, L.K.Y., Lau, H.Y.K.: A study of cybersickness and sensory conflict theory using a motion-coupled virtual reality system. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces, March 2018

    Google Scholar 

  22. Nilsson, N.C., Nordahl, R., Sikström, E., Turchet, L., Serafin, S.: Haptically induced illusory self-motion and the influence of context of motion. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7282, pp. 349–360. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31401-8_32

    Chapter  Google Scholar 

  23. Pinson, M.H., et al.: The influence of subjects and environment on audiovisual subjective tests: an international study. IEEE J. Sel. Top. Sig. Process. 6(6), 640–651 (2012)

    Article  Google Scholar 

  24. Ratcliffe, J., Soave, F., Bryan-Kinns, N., Tokarchuk, L., Farkhatdinov, I.: Extended Reality (XR) remote research: a survey of drawbacks and opportunities. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–13. ACM, Yokohama, May 2021

    Google Scholar 

  25. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22, 5–55 (1932)

    Google Scholar 

  26. Riecke, B.E., Feuereissen, D., Rieser, J.J.: Auditory self-motion illusions (“circular vection”) can be facilitated by vibrations and the potential for actual motion. In: Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization - APGV 2008, p. 147. ACM Press, Los Angeles (2008)

    Google Scholar 

  27. Riecke, B.E., Feuereissen, D., Rieser, J.J.: Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Trans. Appl. Percept. 6(3), 1–22 (2009)

    Article  Google Scholar 

  28. Lipshitz, S., Vanderkooy, J.: The great debate: subjective evaluation. J. Audio Eng. Soc. 29, 482–491 (1980)

    Google Scholar 

  29. Sapir, E.: A study in phonetic symbolism. J. Exp. Psychol. 12(3), 225–239 (1929)

    Article  Google Scholar 

  30. Schwind, V., Knierim, P., Haas, N., Henze, N.: Using presence questionnaires in virtual reality. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI 2019, pp. 1–12. ACM Press, Glasgow (2019)

    Google Scholar 

  31. Selfridge, R., Moffat, D., Reiss, J.D.: Physically derived sound synthesis model of a propeller. In: Proceedings of the 12th International Audio Mostly Conference on Augmented and Participatory Sound and Music Experiences. ACM, August 2017

    Google Scholar 

  32. Seya, Y., Shinoda, H.: Relationship between vection and motion perception in depth. Attention Percept. Psychophys. 80(8), 2008–2021 (2018). https://doi.org/10.3758/s13414-018-1567-y

    Article  Google Scholar 

  33. Slater, M., Usoh, M.: Presence in immersive virtual environments. In: Proceedings of IEEE Virtual Reality, pp. 90–96. IEEE, Seattle (1993)

    Google Scholar 

  34. Slater, M., Sanchez-Vives, M.V.: Enhancing our lives with immersive virtual reality. Front. Rob. AI 3, 74 (2016)

    Google Scholar 

  35. Soave, F., Bryan-Kinns, N., Farkhatdinov, I.: A preliminary study on full-body haptic stimulation on modulating self-motion perception in virtual reality. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2020. LNCS, vol. 12242, pp. 461–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58465-8_34

    Chapter  Google Scholar 

  36. Soave, F., Farkhatdinov, I., Bryan-Kinns, N.: Multisensory teleportation in virtual reality applications. In: 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 377–379. IEEE (2021)

    Google Scholar 

  37. Soave, F., Padma Kumar, A., Bryan-Kinns, N., Farkhatdinov, I.: Exploring terminology for perception of motion in virtual reality. In: Designing Interactive Systems Conference 2021, pp. 171–179 (2021)

    Google Scholar 

  38. Steed, A., Frlston, S., Lopez, M.M., Drummond, J., Pan, Y., Swapp, D.: An ‘In the Wild’ experiment on presence and embodiment using consumer virtual reality equipment. IEEE Trans. Vis. Comput. Graph. 22(4), 1406–1414 (2016)

    Article  Google Scholar 

  39. Stevens, J.C., Marks, L.E.: Cross-modality matching of brightness and loudness. Proc. Natl. Acad. Sci. 54(2), 407–411 (1965)

    Article  Google Scholar 

  40. Usoh, M., Catena, E., Arman, S., Slater, M.: Using presence questionnaires in reality. Presence Teleoperators Virtual Environ. 9(5), 497–503 (2000)

    Google Scholar 

  41. Väljamäe, A., Larsson, P., Västfjäll, D., Kleiner, M.: Vibrotactile enhancement of auditory-induced self-motion and spatial presence. J. Audio Eng. Soc. 54(10), 954–963 (2006)

    Google Scholar 

  42. Weidner, F., Hoesch, A., Poeschl, S., Broll, W.: Comparing VR and non-VR driving simulations: an experimental user study. In: 2017 IEEE Virtual Reality (VR), pp. 281–282. IEEE, Los Angeles (2017)

    Google Scholar 

  43. Wu, E., Perteneder, F., Koike, H., Nozawa, T.: How to VizSki: visualizing captured skier motion in a VR Ski training simulator. In: The 17th International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 1–9. ACM, Brisbane, November 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Soave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soave, F., Bryan-Kinns, N., Farkhatdinov, I. (2022). Designing Audio Feedback to Enhance Motion Perception in Virtual Reality. In: Saitis, C., Farkhatdinov, I., Papetti, S. (eds) Haptic and Audio Interaction Design. HAID 2022. Lecture Notes in Computer Science, vol 13417. Springer, Cham. https://doi.org/10.1007/978-3-031-15019-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15019-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15018-0

  • Online ISBN: 978-3-031-15019-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics