Skip to main content

Differential Privacy: An Umbrella Review

  • Chapter
  • First Online:
Artificial Intelligence and Cybersecurity

Abstract

Privacy-preserving analysis of data refers to possibilities of using personal information from individuals in a completely anonymous fashion. In a statistical sense, this means that statistics and models derived and learned from data are insensitive to individual observations. Differential Privacy as defined by Cynthia Dwork in (Dwork 2006) has become a popular approach for ensuring privacy. In contrast to earlier definitions, Dwork defined differential privacy as a relative guarantee that nothing more could be learned from data whether an individual observation is included or excluded from the analysis. This was achieved by adding random noise that is bigger than the effect of a change due to the largest single participant. The approach was referred as 𝜖-differential privacy. Such an actionable definition gave more room for practitioners to define how, for example, machine learning algorithms can ensure differential privacy. In this paper, we present an umbrella review on differential privacy related studies based on a methodology proposed by Aromataris et al. (Int J Evidence-Based Healthcare 13(3):132–140, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abowd, J., et al.: Census TopDown: Differentially Private Data, Incremental Schemas, and Consistency with Public Knowledge (2019). https://systems.cs.columbia.edu/private-systems-class/papers/Abowd2019Census.pdf.

  2. Alamo, T., et al.: Covid-19: open-data resources for monitoring, modeling, and forecasting the epidemic. Electronics 9(5), 827 (2020)

    Article  Google Scholar 

  3. Apple Differential Privacy Team: Learning with Privacy at Scale (2017). https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf

  4. Aromataris, E., et al.: Summarizing systematic reviews. Int. J. Evidence-Based Healthcare 13(3), 132–140 (2015). ISSN: 1744-1609. https://doi.org/10.1097/XEB.0000000000000055

    Article  Google Scholar 

  5. Bastian, H., Glasziou, P., Chalmers, I.: Seventy-five trials and eleven systematic reviews a day: how will we ever keep up? PLoS Med 7(9), e1000326 (2010)

    Article  Google Scholar 

  6. Bun, M., Steinke, T.: Concentrated differential privacy: simplifications, extensions, and lower bounds, pp. 635–658 (2016). https://doi.org/10.1007/978-3-662-53641-4_24

  7. Dankar, F.K., El Emam, K.: Practicing differential privacy in health care: a review. Trans. Data Privacy 6, 35–67 (2013). https://www.researchgate.net/profile/Fida_Dankar/publication/288417434_Practicing_Differential_Privacy_in_Health_Care_A_Review/links/5889c07ea6fdcc9a35c3b516/Practicing-Differential-Privacy-in-Health-Care-A-Review.pdf?origin=publication_detail&fbclid=IwAR

    Google Scholar 

  8. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting telemetry data privately. Adv. Neural Inform. Proc. Syst 2017, 3572–3581 (2017)

    Google Scholar 

  9. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local Privacy, Data Processing Inequalities, and Minimax Rates. Tech. rep. 2014

    Google Scholar 

  10. Dwork, C.: Differential privacy. In: Bugliesi, M., et al. (ed.), Automata, Languages and Programming. Springer, Berlin Heidelberg, pp. 1–12 (2006). ISBN: 978-3-540-35908-1

    Google Scholar 

  11. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., et al. (ed.), Theory and Applications of Models of Computation. Springer, Berlin Heidelberg, pp. 1–19 (2008). ISBN: 978-3-540-79228-4

    MATH  Google Scholar 

  12. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends®Theor. Comput. Sci. 9(3–4), 211–407 (2014). ISSN: 1551-305X. https://doi.org/10.1561/0400000042

  13. Dwork, C., et al.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography. Springer, Berlin Heidelberg, pp. 265–284 (2006). ISBN: 978-3-540-32732-5

    Chapter  Google Scholar 

  14. Dwork, C., et al.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) Advances in Cryptology—EUROCRYPT 2006. Springer, Berlin Heidelberg, pp. 486–503 (2006). ISBN: 978-3-540-34547-3

    Chapter  Google Scholar 

  15. Eigner, F., et al.: Achieving optimal utility for distributed differential privacy using secure multiparty computation. In: Land, P., Kamm, L. (eds.) Applications of Secure Multiparty computation, Chap. 5, pp. 81–105. IOS Press BV (2015). ISBN: 978-1-61499-532-6. https://doi.org/10.3233/978-1-61499-532-6-81

  16. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. CCS ’14. Association for Computing Machinery, New York, pp. 1054–1067 (2014). ISBN: 9781450329576. https://doi.org/10.1145/2660267.2660348

  17. Facebook: What Are Privacy-Enchancing Technologies (PETs) and How Will They Apply to Ads? (2021). https://about.fb.com/news/2021/08/privacy-enhancing-technologies-and-ads/

  18. Ficek, J., et al.: A Survey of Differentially Private Regression for Clinical and Epidemiological Research. Int. Stat. Rev. (2020). ISSN: 03067734. https://doi.org/10.1111/insr.12391

  19. Fletcher, S., Zahidul Islam, Md.: Decision tree classification with differential privacy. ACM Comput. Surv. 52(4), 1–33 (2019). ISSN: 0360-0300. https://doi.org/10.1145/3337064

  20. Gehrke, J.: Quo vadis, data privacy? Ann. N. Y. Acad. Sci. 1260(1), 45–54 (2012). ISSN: 00778923. https://doi.org/10.1111/j.1749-6632.2012.06630.x

    Article  Google Scholar 

  21. Gong, M., et al.: A survey on differentially private machine learning [Review article]. IEEE Comput. Intell. Mag. 15(2), 49–64 (2020). ISSN: 1556-6048. https://doi.org/10.1109/MCI.2020.2976185

    Article  Google Scholar 

  22. Grant, M.J., Booth, A.: A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inform. Lib. J. 26(2), 91–108 (2009)

    Article  Google Scholar 

  23. Guevara, M.: How we’re helping developers with differential privacy (2021). https://developers.googleblog.com/2021/01/howwere-helping-developers-with-differential-privacy.html

  24. Hassan, M.U., Rehmani, M.H., Chen, J.: Differential privacy techniques for cyber physical systems: a survey. IEEE Commun. Surv. Tutorials 22(1), 746–789 (2020). ISSN: 1553-877X. https://doi.org/10.1109/COMST.2019.2944748

    Article  Google Scholar 

  25. Hassani, H., Huang, X., Silva, E.: Big Data and climate change. Big Data Cogn. Comput. 3(1), 12 (2019)

    Article  Google Scholar 

  26. Hauer, M.E., Santos-Lozada, A.R.: Differential privacy in the 2020 Census will distort COVID-19 rates. Socius 7, 2378023121994014 (2021)

    Article  Google Scholar 

  27. Hoda, R., et al.: Systematic literature reviews in agile software development: a tertiary study. Inform. Softw. Technol. 85, 60–70 (2017)

    Article  Google Scholar 

  28. Isomöttönen, V., Kärkkäinen, T.: Project-based learning emphasizing open resources and student ideation: how to raise student awareness of IPR? In: International Conference on Computer Supported Education, pp. 293–312. Springer, Berlin (2015)

    Google Scholar 

  29. Jahan, N., et al.: How to conduct a systematic review: a narrative literature review. Cureus 8(11) (2016)

    Google Scholar 

  30. Johnson, N., Near, J.P., Song, D.: Towards practical differential privacy for SQL queries. Proc. VLDB Endow. 11(5), 526–539 (2018). ISSN: 2150-8097. https://doi.org/10.1145/3187009.3177733

    Article  Google Scholar 

  31. Kasiviswanathan, S.P., Smith, A.: On the ’semantics’ of differential privacy: a Bayesian formulation. J. Privacy Confidentiality 6(1), 2575–8527 (2014). https://doi.org/10.29012/jpc.v6i1.634

    Article  Google Scholar 

  32. Kasiviswanathan, S.P., et al.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011). ISSN: 0097-5397. https://doi.org/10.1137/090756090

    Article  MATH  Google Scholar 

  33. Kessler, S., Hoff, J., Freytag, J.C.: SAP HANA goes private: from privacy research to privacy aware enterprise analytics. Proc. VLDB Endow 12(12), 1998–2009 (2019). ISSN: 2150-8097. https://doi.org/10.14778/3352063.3352119

    Article  Google Scholar 

  34. Kifer, D., et al.: Guidelines for implementing and auditing differentially private systems (2020). http://arxiv.org/abs/2002.04049

  35. Kiranmayi, M., Maheswari, N.: A review on privacy preservation of social networks using graphs. J. Appl. Secur. Res. 1–34 (2020). ISSN: 1936-1610. https://doi.org/10.1080/19361610.2020.1751558

  36. Klerings, I., Weinhandl, A.S., Thaler, K.J.: Information overload in healthcare: too much of a good thing? Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen 109(4–5), 285–290 (2015)

    Article  Google Scholar 

  37. Landhuis, E.: Scientific literature: information overload Nature 535(7612), 457–458 (2016)

    Google Scholar 

  38. Liu, F.: Generalized Gaussian mechanism for differential privacy. IEEE Trans. Knowl. Data Eng. 31(4), 747–756 (2019). ISSN: 1558-2191. https://doi.org/10.1109/TKDE.2018.2845388

    Article  Google Scholar 

  39. Machanavajjhala, A., et al.: Privacy: theory meets practice on the map. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 277–286 (2008). https://doi.org/10.1109/ICDE.2008.4497436

  40. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pp. 94–103 (2007). https://doi.org/10.1109/FOCS.2007.66

  41. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. SIGMOD ’09. Association for Computing Machinery, New York, pp. 19–30 (2009). ISBN: 9781605585512. https://doi.org/10.1145/1559845.1559850

  42. Mironov, I.: Rényi differential privacy. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp. 263–275 (2017). https://doi.org/10.1109/CSF.2017.11

  43. Nayak, C.: New privacy-protected Facebook data for independent research on social media’s impact on democracy (2020). https://research.fb.com/blog/2020/02/new-privacy-protected-facebook-datafor-independent-research-on-social-medias-impact-on-democracy/

  44. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing. STOC ’07. Association for Computing Machinery, New York, pp. 75–84 (2007). ISBN: 9781595936318. https://doi.org/10.1145/1250790.1250803

  45. Oberski, D.L., Kreuter, F.: Differential privacy and social science: an urgent puzzle. Harvard Data Sci. Rev. 2(1) (2020)

    Google Scholar 

  46. Page, M.J, et al.: PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372 (2021)

    Google Scholar 

  47. Perrons, R.K., Jensen, J.W.: Data as an asset: what the oil and gas sector can learn from other industries about “Big Data”. Energy Policy 81, 117–121 (2015)

    Article  Google Scholar 

  48. Rana, S., Gupta, S.K., Venkatesh, S.: Differentially private random forest with high utility. In: 2015 IEEE International Conference on Data Mining, pp. 955–960 (2015). https://doi.org/10.1109/ICDM.2015.76

  49. Sarwate, A.D., et al.: Sharing privacy-sensitive access to neuroimaging and genetics data: a review and preliminary validation. Front. Neuroinform. 8. ISSN: 1662-5196. https://doi.org/10.3389/fninf.2014.00035

  50. Snoke, J., Bowen, C.M.: How statisticians should grapple with privacy in a changing data landscape. Chance 33(4), 6–13 (2020). https://doi.org/10.108/09332480.2020.1847947

    Article  Google Scholar 

  51. Snyder, H.: Literature review as a research methodology: an overview and guidelines. J. Bus. Res. 104, 333–339 (2019)

    Article  Google Scholar 

  52. Tatem, A.J.: WorldPop, open data for spatial demography. Sci. Data 4(1), 1–4 (2017)

    Article  Google Scholar 

  53. Testuggine, D., Mironov, I.: Introducing Opacus: a high-speed library for training PyTorch models with differential privacy (2020). https://ai.facebook.com/blog/introducingopacus-a-high-speed-library-for-training-pytorch-modelswith-differential-privacy/

  54. Wang, J., Liu S., Li, Y.: A review of differential privacy in individual data release. Int. J. Distrib. Sensor Netw. 2015, 1–18 (2015). ISSN: 1550-1329. https://doi.org/10.1155/2015/259682

    Google Scholar 

  55. Wang, T., et al.: A comprehensive survey on local differential privacy toward data statistics and analysis. Sensors 20(24), 7030 (2020). ISSN: 1424-8220. https://doi.org/10.3390/s20247030

    Article  Google Scholar 

  56. Wang, Y.-X., Lei, J., Fienberg, S.E.: Learning with differential privacy: stability learnability and the sufficiency and necessity of ERM principle. J. Mach. Learn. Res. 17(1), 6353–6392 (2016). ISSN: 1532-4435

    MATH  Google Scholar 

  57. Warner, S.L.: Randomized response: a survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60(309), 63 (1965). ISSN: 01621459. https://doi.org/10.2307/2283137

    Article  MATH  Google Scholar 

  58. Wennberg, J., Gittelsohn, A.: Small area variations in health care delivery: a population-based health information system can guide planning and regulatory decision-making. Science 182(4117), 1102–1108 (1973)

    Article  Google Scholar 

  59. Zeng, X., et al.: Repurpose open data to discover therapeutics for COVID-19 using deep learning. J. Proteome Res. 19(11), 4624–4636 (2020)

    Article  Google Scholar 

  60. Zhu, T., et al.: Differentially private data publishing and analysis: a survey. IEEE Trans. Knowl. Data Eng. 29(8), 1619–1638 (2017). ISSN: 1041-4347. https://doi.org/10.1109/TKDE.2017.2697856

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kilpala, M., Kärkkäinen, T., Hämäläinen, T. (2023). Differential Privacy: An Umbrella Review. In: Sipola, T., Kokkonen, T., Karjalainen, M. (eds) Artificial Intelligence and Cybersecurity. Springer, Cham. https://doi.org/10.1007/978-3-031-15030-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15030-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15029-6

  • Online ISBN: 978-3-031-15030-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics