Skip to main content

Prediction of Neuropsychological Scores from Functional Connectivity Matrices Using Deep Autoencoders

  • Conference paper
  • First Online:
Brain Informatics (BI 2022)

Abstract

Deep learning models are being increasingly used in precision medicine thanks to their ability to provide accurate predictions of clinical outcome from large-scale datasets of patient’s records. However, in many cases data scarcity has forced the adoption of simpler (linear) feature extraction methods, which are less prone to overfitting. In this work, we exploit data augmentation and transfer learning techniques to show that deep, non-linear autoencoders can in fact extract relevant features from resting state functional connectivity matrices of stroke patients, even when the available data is modest. The latent representations extracted by the autoencoders can then be given as input to regularized regression methods to predict neurophsychological scores, significantly outperforming recently proposed methods based on linear feature extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that although the extracted features were obtained using the synthetic data, the model performance was always measured on the final stroke dataset.

  2. 2.

    It should be pointed out that for these simulations we did not implement an exhaustive hyper-parameter optimization, as in the previous cases.

References

  1. Greicius, M., Supekar, K., Menon, V., Dougherty, R.: Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–8 (2008)

    Article  Google Scholar 

  2. Meskaldji, D.E., et al.: Prediction of long-term memory scores in MCI based on resting-state FMRI. NeuroImage Clin. 12, 785–795 (2016)

    Article  Google Scholar 

  3. Siegel, J.S., et al.: Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc. Natl. Acad. Sci. 113(30), E4367–E4376 (2016)

    Article  Google Scholar 

  4. Salvalaggio, A., De Filippo De Grazia, M., Zorzi, M., Thiebaut de Schotten, M., Corbetta, M.: Post-stroke deficit prediction from lesion and indirect structural and functional disconnection. Brain 143(7), 2173–2188 (2020)

    Google Scholar 

  5. Calesella, F., Testolin, A., De Filippo De Grazia, M., Zorzi, M.: A comparison of feature extraction methods for prediction of neuropsychological scores from functional connectivity data of stroke patients. Brain Inform. 8, 1–13 (2021)

    Google Scholar 

  6. Zorzi, M., De Filippo De Grazia, M., Blini, E., Testolin, A.: Assessment of machine learning pipelines for prediction of behavioral deficits from brain disconnectomes. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 211–222. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_20

    Chapter  Google Scholar 

  7. Jollans, L., et al.: Quantifying performance of machine learning methods for neuroimaging data. Neuroimage 199, 351–365 (2019)

    Article  Google Scholar 

  8. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders. arXiv abs/2003.05991 (2020)

    Google Scholar 

  9. Kim, J.H., Zhang, Y., Han, K., Wen, Z., Choi, M., Liu, Z.: Representation learning of resting state fMRI with variational autoencoder. NeuroImage 241, 118423 (2021)

    Google Scholar 

  10. Huang, H., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37(7), 1551–1561 (2017)

    Article  Google Scholar 

  11. Pinaya, W., Mechelli, A., Sato, J.: Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. Hum. Brain Mapp. 40, 944–954 (2018)

    Article  Google Scholar 

  12. GENG, X.F., Xu, J.: Application of autoencoder in depression diagnosis. DEStech Trans. Comput. Sci. Eng. (2017)

    Google Scholar 

  13. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  14. Cui, Z., Gong, G.: The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. Neuroimage 178, 622–637 (2018)

    Article  Google Scholar 

  15. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning - From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  16. Cai, B., et al.: Functional connectome fingerprinting: identifying individuals and predicting cognitive functions via autoencoder. Hum. Brain Mapp. 42, 2691–2705 (2021)

    Article  Google Scholar 

  17. Pedrycz, W., Chen, S.-M. (eds.): Deep Learning: Algorithms and Applications. SCI, vol. 865. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31760-7

    Book  Google Scholar 

  18. Scholz, M., Vigário, R.: Nonlinear PCA: a new hierarchical approach. In: ESANN (2002)

    Google Scholar 

  19. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  20. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  21. Shorten, C., Khoshgoftaar, T.: A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019)

    Article  Google Scholar 

  22. Zhang, H., Cissé, M., Dauphin, Y., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. arXiv abs/1710.09412 (2018)

    Google Scholar 

  23. Isaksson, L., et al.: Mixup (sample pairing) can improve the performance of deep segmentation networks. J. Artif. Intell. Soft Comput. Res. 12, 29–39 (2022)

    Article  Google Scholar 

  24. Hoerl, A., Kennard, R.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (2012)

    Article  Google Scholar 

  25. Tibshirani, R.: Regression shrinkage selection via the lasso. J. Roy. Stat. Soc. Ser. B 73, 273–282 (2011)

    Article  MathSciNet  Google Scholar 

  26. Zou, H., Hastie, T.: regularization and variable selection via the elastic net. J. Roy. Stat. Soc. B 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

  27. Baldi, P., Hornik, K.: Neural networks and principal component analysis: learning from examples without local minima. Neural Netw. 2(1), 53–58 (1989)

    Article  Google Scholar 

  28. Singh, A., Sengupta, S., Lakshminarayanan, V.: Explainable deep learning models in medical image analysis. J. Imaging 6(6), 52 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Italian Ministry of Health (RF-2019-02359306 to MZ, Ricerca Corrente to IRCCS Ospedale San Camillo) and by MIUR (Dipartimenti di Eccellenza DM 11/05/2017 n. 262 to the Department of General Psychology). We are grateful to Prof. Maurizio Corbetta for providing the stroke dataset, which was collected in a study funded by grants R01 HD061117-05 and R01 NS095741. Healthy adults rs-fMRI data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alberto Testolin or Marco Zorzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Irarte, D., Testolin, A., De Filippo De Grazia, M., Zorzi, M. (2022). Prediction of Neuropsychological Scores from Functional Connectivity Matrices Using Deep Autoencoders. In: Mahmud, M., He, J., Vassanelli, S., van Zundert, A., Zhong, N. (eds) Brain Informatics. BI 2022. Lecture Notes in Computer Science(), vol 13406. Springer, Cham. https://doi.org/10.1007/978-3-031-15037-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15037-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15036-4

  • Online ISBN: 978-3-031-15037-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics