Skip to main content

Classifying EEG Signals of Mind-Wandering Across Different Styles of Meditation

  • Conference paper
  • First Online:
Brain Informatics (BI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13406))

Included in the following conference series:

Abstract

In the modern world, it is easy to get lost in thought, partly because of the vast knowledge available at our fingertips via smartphones that divide our cognitive resources and partly because of our intrinsic thoughts. In this work, we aim to find the differences in the neural signatures of mind-wandering and meditation that are common across different meditative styles. We use EEG recording done during meditation sessions by experts of different meditative styles, namely shamatha, zazen, dzogchen, and visualization. We evaluate the models using the leave-one-out validation technique to train on three meditative styles and test the fourth left-out style. With this method, we achieve an average classification accuracy of above 70%, suggesting that EEG signals of meditation techniques have a unique neural signature across meditative styles and can be differentiated from mind-wandering states. In addition, we generate lower-dimensional embeddings from higher-dimensional ones using t-SNE, PCA, and LLE algorithms and observe visual differences in embeddings between meditation and mind-wandering. We also discuss the general flow of the proposed design and contributions to the field of neuro-feedback-enabled mind-wandering detection and correction devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meditation: In depth. https://www.nccih.nih.gov/health/meditation-in-depth

  2. Deng, Y.Q., Li, S., Tang, Y.Y.: The relationship between wandering mind, depression and mindfulness. Mindfulness 5(2), 124–128 (2014)

    Article  Google Scholar 

  3. Dong, H.W., Mills, C., Knight, R.T., Kam, J.W.: Detection of mind wandering using EEG: within and across individuals. PLoS ONE 16(5), e0251490 (2021)

    Article  Google Scholar 

  4. Galway, L., Brennan, C., McCullagh, P., Lightbody, G.: BCI and eye gaze: collaboration at the interface. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2015. LNCS (LNAI), vol. 9183, pp. 199–210. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20816-9_20

    Chapter  Google Scholar 

  5. Gramfort, A., et al.: MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7(267), 1–13 (2013). https://doi.org/10.3389/fnins.2013.00267

    Article  Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  7. Kora, P., Meenakshi, K., Swaraja, K., Rajani, A., Raju, M.S.: EEG based interpretation of human brain activity during yoga and meditation using machine learning: a systematic review. Complement. Ther. Clin. Pract. 43, 101329 (2021)

    Article  Google Scholar 

  8. Lomas, T., Cartwright, T., Edginton, T., Ridge, D.: A qualitative analysis of experiential challenges associated with meditation practice. Mindfulness 6(4), 848–860 (2015)

    Article  Google Scholar 

  9. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  10. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018). https://doi.org/10.1109/TNNLS.2018.2790388

    Article  MathSciNet  Google Scholar 

  11. Mooneyham, B.W., Schooler, J.W.: The costs and benefits of mind-wandering: a review. Can. J. Exp. Psychol./Revue canadienne de psychologie expérimentale 67(1), 11 (2013)

    Article  Google Scholar 

  12. Pandey, P., Gupta, P., Miyapuram, K.P.: Brain connectivity based classification of meditation expertise. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 89–98. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_9

    Chapter  Google Scholar 

  13. Pandey, P., Miyapuram, K.P.: Classifying oscillatory signatures of expert vs nonexpert meditators. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2020)

    Google Scholar 

  14. Pandey, P., Miyapuram, K.P.: BRAIN2DEPTH: lightweight CNN model for classification of cognitive states from EEG recordings. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds.) MIUA 2021. LNCS, vol. 12722, pp. 394–407. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80432-9_30

    Chapter  Google Scholar 

  15. Pandey, P., Miyapuram, K.P.: Nonlinear EEG analysis of mindfulness training using interpretable machine learning. In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 3051–3057 (2021). https://doi.org/10.1109/BIBM52615.2021.9669457

  16. Gupta, P., Pandey, P., Miyapuram, K.P.: Reliable EEG neuromarker to discriminate meditative states across practitioners (2022). https://doi.org/10.13140/RG.2.2.23937.94568

  17. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  18. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  19. Sharma, H., Raj, R., Juneja, M.: An empirical comparison of machine learning algorithms for the classification of brain signals to assess the impact of combined yoga and sudarshan kriya. Comput. Methods Biomech. Biomed. Eng. 25, 1–8 (2021)

    Google Scholar 

  20. Vallat, R., Walker, M.P.: An open-source, high-performance tool for automated sleep staging. eLife 10, e70092 (2021). https://doi.org/10.7554/elife.70092

  21. Vivot, R.M., Pallavicini, C., Zamberlan, F., Vigo, D., Tagliazucchi, E.: Meditation increases the entropy of brain oscillatory activity. Neuroscience 431, 40–51 (2020)

    Article  Google Scholar 

  22. West, M.: Meditation. Br. J. Psychiatry 135(5), 457–467 (1979). https://doi.org/10.1192/bjp.135.5.457

    Article  Google Scholar 

  23. Yamaoka, A., Yukawa, S.: Mind wandering in creative problem-solving: relationships with divergent thinking and mental health. PLoS ONE 15(4), e0231946 (2020)

    Article  Google Scholar 

  24. Young, J.H., Arterberry, M.E., Martin, J.P.: Contrasting electroencephalography-derived entropy and neural oscillations with highly skilled meditators. Front. Hum. Neurosci. 15, 628417 (2021). https://doi.org/10.3389/fnhum.2021.628417. https://www.frontiersin.org/article/10.3389/fnhum.2021.628417

  25. Zhang, Y., Zhang, Z., Luo, L., Tong, H., Chen, F., Hou, S.T.: 40 HZ light flicker alters human brain electroencephalography microstates and complexity implicated in brain diseases. Front. Neurosci. 15 (2021). https://doi.org/10.3389/fnins.2021.777183. https://www.frontiersin.org/article/10.3389/fnins.2021.777183

Download references

Acknowledgement

We thank Science and Engineering Research Board (SERB), and PlayPower Labs for supporting the Prime Minister’s Research Fellowship (PMRF) awarded to Pankaj Pandey. We thank the Federation of Indian Chambers of Commerce & Industry (FICCI) for facilitating this PMRF. We thank Jacob Young for providing the processed dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivam Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaudhary, S., Pandey, P., Miyapuram, K.P., Lomas, D. (2022). Classifying EEG Signals of Mind-Wandering Across Different Styles of Meditation. In: Mahmud, M., He, J., Vassanelli, S., van Zundert, A., Zhong, N. (eds) Brain Informatics. BI 2022. Lecture Notes in Computer Science(), vol 13406. Springer, Cham. https://doi.org/10.1007/978-3-031-15037-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15037-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15036-4

  • Online ISBN: 978-3-031-15037-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics