Abstract
Virtual-reality exposure therapy (VRET) is a novel intervention technique that allows individuals to experience anxiety evoking stimuli in a safe environment, to recognise specific triggers and gradually increase their exposure to perceived threats. Public-speaking anxiety (PSA) is very common form of social anxiety, characterised by stressful arousal and anxiety generated when presenting to an audience. In self-guided VRET participants can gradually increase their tolerance to exposure and reduce anxiety induced arousal and PSA over time. However, creating such a VR environment and determining physiological indices of anxiety induced arousal or distress is an open challenge. Environment modelling, character creation and animation, psychological state determination and the use of machine learning models for anxiety or stress detection are equally important, and multi-disciplinary expertise is required. In this work, we have explored a series of machine learning models with publicly available data sets (using electroencephalogram and heart rate variability) to predict arousal states. If we can detect anxiety-induced arousal, we can trigger calming activities to allow individuals to cope with and overcome the distress. Here, we discuss the means of effective selection of machine learning models and parameters in arousal detection. We propose a pipeline to overcome the model selection problem with different parameter settings in the context of Virtual Reality Exposure Therapy. This pipeline can be extended to many other domains of interest, where arousal detection is crucial.
S. Nastase—Independent Clinical Psychologist.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adiba, F.I., Islam, T., Kaiser, M.S., Mahmud, M., Rahman, M.A.: Effect of corpora on classification of fake news using Naive Bayes classifier. Int. J. Autom. Artif. Intell. Mach. Learn. 1(1), 80–92 (2020). https://researchlakejournals.com/index.php/AAIML/article/view/45
Ahuja, R., Banga, A.: Mental stress detection in university students using machine learning algorithms. Procedia Comput. Sci. 152, 349–353 (2019). https://doi.org/10.1016/j.procs.2019.05.007. https://www.sciencedirect.com/science/article/pii/S1877050919306581
Alshorman, O., et al.: Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection. J. Integr. Neurosci. 1–11 (2021)
Biswas, M., Kaiser, M.S., Mahmud, M., Al Mamun, S., Hossain, M.S., Rahman, M.A.: An XAI based autism detection: the context behind the detection. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) BI 2021. LNCS (LNAI), vol. 12960, pp. 448–459. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_40
Bălan, O., Moldoveanu, A., Leordeanu, M.: A machine learning approach to automatic phobia therapy with virtual reality. In: Opris, I., Lebedev, M.A., Casanova, M.F. (eds.) Modern Approaches to Augmentation of Brain Function. CCN, pp. 607–636. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-54564-2_27
Carl, E., et al.: Virtual reality exposure therapy for anxiety and related disorders: a meta-analysis of randomized controlled trials. J. Anxiety Disord. 61, 27–36 (2019)
Chen, C., et al.: EEG-based anxious states classification using affective BCI-based closed neurofeedback system. J. Med. Biol. Eng. 41(2), 155–164 (2021)
Chen, L., Yan, J., Chen, J., Sheng, Y., Xu, Z., Mahmud, M.: An event based topic learning pipeline for neuroimaging literature mining. Brain Inform. 7(1), 1–14 (2020)
Choy, Y., Fyer, A.J., Lipsitz, J.D.: Treatment of specific phobia in adults. Clin. Psychol. Rev. 27(3), 266–286 (2007). https://doi.org/10.1016/j.cpr.2006.10.002. https://www.sciencedirect.com/science/article/pii/S0272735806001164
Das, S., Yasmin, M.R., Arefin, M., Taher, K.A., Uddin, M.N., Rahman, M.A.: Mixed Bangla-English spoken digit classification using convolutional neural network. In: Mahmud, M., Kaiser, M.S., Kasabov, N., Iftekharuddin, K., Zhong, N. (eds.) AII 2021. CCIS, vol. 1435, pp. 371–383. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82269-9_29
Das, T.R., Hasan, S., Sarwar, S.M., Das, J.K., Rahman, M.A.: Facial spoof detection using support vector machine. In: Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K. (eds.) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. AISC, vol. 1309, pp. 615–625. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4673-4_50
Doborjeh, Z., et al.: Interpretability of spatiotemporal dynamics of the brain processes followed by mindfulness intervention in a brain-inspired spiking neural network architecture. Sensors 20(24), 7354 (2020)
Doborjeh, Z., et al.: Spiking neural network modelling approach reveals how mindfulness training rewires the brain. Sci. Rep. 9(1), 1–15 (2019)
Duan, L., et al.: Machine learning approaches for MDD detection and emotion decoding using EEG signals. Front. Hum. Neurosci. 14, 284 (2020)
Ferdous, H., Siraj, T., Setu, S.J., Anwar, M.M., Rahman, M.A.: Machine learning approach towards satellite image classification. In: Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K. (eds.) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. AISC, vol. 1309, pp. 627–637. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4673-4_51
Ghaderi, A., Frounchi, J., Farnam, A.: Machine learning-based signal processing using physiological signals for stress detection. In: 2015 22nd Iranian Conference on Biomedical Engineering (ICBME), pp. 93–98, November 2015. https://doi.org/10.1109/ICBME.2015.7404123
Gramfort, A., et al.: MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7(267), 1–13 (2013). https://doi.org/10.3389/fnins.2013.00267
Grzadzinski, R., Huerta, M., Lord, C.: DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD subtypes. Mol. Autism 4(1), 1–6 (2013)
Healey, J.A.: Wearable and automotive systems for affect recognition from physiology. Thesis, Massachusetts Institute of Technology (2000). https://dspace.mit.edu/handle/1721.1/9067. Accepted 24 Aug 2005
Horigome, T., et al.: Virtual reality exposure therapy for social anxiety disorder: a systematic review and meta-analysis. Psychol. Med. 50(15), 2487–2497 (2020)
Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012). https://doi.org/10.1109/T-AFFC.2011.15. http://ieeexplore.ieee.org/document/5871728/
Koldijk, S., Neerincx, M.A., Kraaij, W.: Detecting work stress in offices by combining unobtrusive sensors. IEEE Trans. Affect. Comput. 9(2), 227–239 (2018). https://doi.org/10.1109/TAFFC.2016.2610975
LeBeau, R.T., et al.: Specific phobia: a review of DSM-IV specific phobia and preliminary recommendations for DSM-V. Depress. Anxiety 27(2), 148–167 (2010). https://doi.org/10.1002/da.20655
Leehr, E.J., Roesmann, K.: Clinical predictors of treatment response towards exposure therapy in virtuo in spider phobia: a machine learning and external cross-validation approach. J. Anxiety Disord. 83, 102448 (2021). https://doi.org/10.1016/j.janxdis.2021.102448
Mahmud, M., et al.: A brain-inspired trust management model to assure security in a cloud based IoT framework for neuroscience applications. Cogn. Comput. 10(5), 864–873 (2018)
Mahmud, M., Kaiser, M.S., Rahman, M.A.: Towards explainable and privacy-preserving artificial intelligence for personalisation in autism spectrum disorder. In: Antona, M., Stephanidis, C. (eds.) Universal Access in Human-Computer Interaction. User and Context Diversity. LNCS, pp. 356–370. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05039-8_26
Menezes, M.L.R., et al.: Towards emotion recognition for virtual environments: an evaluation of EEG features on benchmark dataset. Pers. Ubiquit. Comput. 21(6), 1003–1013 (2017). https://doi.org/10.1007/s00779-017-1072-7
Nasrin, F., Ahmed, N.I., Rahman, M.A.: Auditory attention state decoding for the quiet and hypothetical environment: a comparison between bLSTM and SVM. In: Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K. (eds.) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. AISC, vol. 1309, pp. 291–301. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4673-4_23
Newman, M.G., Szkodny, L.E., Llera, S.J., Przeworski, A.: A review of technology-assisted self-help and minimal contact therapies for anxiety and depression: is human contact necessary for therapeutic efficacy? Clin. Psychol. Rev. 31(1), 89–103 (2011). https://doi.org/10.1016/j.cpr.2010.09.008
Ottesen, C.: Stress classifier with AutoML, January 2022. https://github.com/chriotte/wearable_stress_classification. Accessed 03 July 2018
Premkumar, P., et al.: The effectiveness of self-guided virtual-reality exposure therapy for public-speaking anxiety. Front. Psychiatry 12 (2021)
Rahman, M.A.: Gaussian process in computational biology: covariance functions for transcriptomics. Ph.D., University of Sheffield, February 2018. https://etheses.whiterose.ac.uk/19460/
Rahman, M.A., Brown, D.J., Shopland, N., Burton, A., Mahmud, M.: Explainable multimodal machine learning for engagement analysis by continuous performance test. In: Antona, M., Stephanidis, C. (eds.) Universal Access in Human-Computer Interaction. User and Context Diversity. LNCS, vol. 13309, pp. 386–399. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05039-8_28
Sadik, R., Reza, M.L., Al Noman, A., Al Mamun, S., Kaiser, M.S., Rahman, M.A.: Covid-19 pandemic: a comparative prediction using machine learning. Int. J. Autom. Artif. Intell. Mach. Learn. 1(1), 1–16 (2020)
Schwarzmeier, H., Leehr, E.J.: Theranostic markers for personalized therapy of spider phobia: methods of a bicentric external cross-validation machine learning approach. Int. J. Methods Psychiatric Res. 29(2), e1812 (2020). https://doi.org/10.1002/mpr.1812. https://onlinelibrary.wiley.com/doi/abs/10.1002/mpr.1812
Shon, D., Im, K., Park, J.H., Lim, D.S., Jang, B., Kim, J.M.: Emotional stress state detection using genetic algorithm-based feature selection on EEG signals. Int. J. Environ. Res. Public Health 15(11), 2461 (2018)
Standen, B., Anderson, J., Sumich, A., Heym, N.: Effects of system- and media-driven immersive capabilities on presence and affective experience. Virtual Reality (2021). https://doi.org/10.1007/s10055-021-00579-2
Valmaggia, L.R., Latif, L., Kempton, M.J., Rus-Calafell, M.: Virtual reality in the psychological treatment for mental health problems: an systematic review of recent evidence. Psychiatry Res. 236, 189–195 (2016)
Yuan, Y., Huang, J., Yan, K.: Virtual reality therapy and machine learning techniques in drug addiction treatment. In: 2019 10th International Conference on Information Technology in Medicine and Education (ITME), pp. 241–245, August 2019. https://doi.org/10.1109/ITME.2019.00062. ISSN 2474-3828
Zyma, I., et al.: Electroencephalograms during mental arithmetic task performance. Data 4(1), 14 (2019). https://doi.org/10.3390/data4010014
Acknowledgement
Funding for the VRET study is provided by the Higher Education Funding Council for England quality-related research (QR) funding awarded to Nottingham Trent University. Additionally, this work is supported by the AI-TOP (2020-1-UK01-KA201-079167) and DIVERSASIA (618615-EPP-1-2020-1-UKEPPKA2-CBHEJP) projects, supported by the European Commission under the Erasmus+ programme.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Rahman, M.A. et al. (2022). Towards Machine Learning Driven Self-guided Virtual Reality Exposure Therapy Based on Arousal State Detection from Multimodal Data. In: Mahmud, M., He, J., Vassanelli, S., van Zundert, A., Zhong, N. (eds) Brain Informatics. BI 2022. Lecture Notes in Computer Science(), vol 13406. Springer, Cham. https://doi.org/10.1007/978-3-031-15037-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-15037-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15036-4
Online ISBN: 978-3-031-15037-1
eBook Packages: Computer ScienceComputer Science (R0)