Skip to main content

Application Runtime Estimation for AURIX Embedded MCU Using Deep Learning

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2022)

Abstract

Estimating execution time is a crucial task during the development of safety-critical embedded systems. Processor simulation or emulation tools on various abstraction levels offer a trade-off between accuracy and runtime. Typically, this requires detailed knowledge of the processor architecture and high manual effort to construct adequate models. In this paper, we explore how deep learning may be used as an alternative approach for building processor performance models. First, we describe how to obtain training data from recorded execution traces. Next, we evaluate various neural network architectures and hyperparameter values. The accuracy of the best network variants is finally compared to two simple baseline models and a mechanistic model based on the QEMU emulator. As an outcome of this evaluation, a model based on the Wavenet architecture is identified, which outperforms all other approaches by achieving a mean absolute percentage error of only 1.63%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp. 265–283 (2016)

    Google Scholar 

  2. Adileh, A., González-Álvarez, C., Ruiz, J.M.D.H., Eeckhout, L.: Racing to hardware-validated simulation. In: 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 58–67. IEEE (2019)

    Google Scholar 

  3. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual Technical Conference, FREENIX Track, vol. 41, p. 46. California, USA (2005)

    Google Scholar 

  4. Buber, E., Diri, B.: Performance analysis and cpu vs gpu comparison for deep learning. In: 2018 6th International Conference on Control Engineering Information Technology (CEIT), pp. 1–6 (2018). https://doi.org/10.1109/CEIT.2018.8751930

  5. Burger, D., Austin, T.M.: The simplescalar tool set, version 2.0. ACM SIGARCH computer architecture news 25(3), 13–25 (1997)

    Google Scholar 

  6. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  7. Eeckhout, L.: Computer architecture performance evaluation methods. Synthesis Lectures Comput. Architecture 5(1), 1–145 (2010)

    Article  Google Scholar 

  8. El Hihi, S., Bengio, Y.: Hierarchical recurrent neural networks for long-term dependencies. In: Advances in Neural Information Processing Systems, pp. 493–499 (1996)

    Google Scholar 

  9. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  10. Eyerman, S., Eeckhout, L., Karkhanis, T., Smith, J.E.: A mechanistic performance model for superscalar out-of-order processors. ACM Trans. Comput. Syst. (TOCS) 27(2), 1–37 (2009)

    Article  Google Scholar 

  11. Gers, F.A., Schmidhuber, J.: Recurrent nets that time and count. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, vol. 3, pp. 189–194. IEEE (2000)

    Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.orgwww.deeplearningbook.org

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  14. Hofmann, J., Alappat, C.L., Hager, G., Fey, D., Wellein, G.: Bridging the architecture gap: abstracting performance-relevant properties of modern server processors. arXiv preprint arXiv:1907.00048 (2019)

  15. Hönig, T., Herzog, B., Schröder-Preikschat, W.: Energy-demand estimation of embedded devices using deep artificial neural networks. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. SAC ’19 (2019). https://doi.org/10.1145/3297280.3297338

  16. Infineon Technologies AG: AURIX TC27x D-Step User’s Manual, December 2014

    Google Scholar 

  17. Infineon Technologies AG: AURIX TC3xx User’s Manual, February 2021

    Google Scholar 

  18. Kang, S., Yoo, D., Ha, S.: TQSIM: a fast cycle-approximate processor simulator based on QEMU. J. Syst. Architect. 66–67, 33–47 (2016). https://doi.org/10.1016/j.sysarc.2016.04.012

    Article  Google Scholar 

  19. Lauterbach GmbH: TriCore Debugger and Trace (2021)

    Google Scholar 

  20. Luo, Y., Li, Y., Yuan, X., Yin, R.: QSim: framework for cycle-accurate simulation on out-of-order processors based on QEMU. In: 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control, pp. 1010–1015 (2012). https://doi.org/10.1109/IMCCC.2012.397

  21. Mendis, C., Renda, A., Amarasinghe, D., Carbin, M.: Ithemal: accurate, portable and fast basic block throughput estimation using deep neural networks. In: Proceedings of the 36th International Conference on Machine Learning (2019)

    Google Scholar 

  22. Nicolescu, G., Mosterman, P.J.: Model-based design for embedded systems. Crc Press (2018)

    Google Scholar 

  23. Nussbaum, S., Smith, J.E.: Modeling superscalar processors via statistical simulation. In: Proceedings 2001 International Conference on Parallel Architectures and Compilation Techniques, pp. 15–24. IEEE (2001)

    Google Scholar 

  24. Oord, A.v.d., et al.: Wavenet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  25. Powell, D.C., Franke, B.: Using continuous statistical machine learning to enable high-speed performance prediction in hybrid instruction-/cycle-accurate instruction set simulators. In: Proceedings of the 7th IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis, pp. 315–324 (2009)

    Google Scholar 

  26. Rachuj, S., Fey, D., Reichenbach, M.: Impact of performance estimation on fast processor simulators. In: Song, H., Jiang, D. (eds.) SIMUtools 2020. LNICST, vol. 370, pp. 79–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72795-6_7

    Chapter  Google Scholar 

  27. Reichenbach, M., Knödtel, J., Rachuj, S., Fey, D.: RISC-V3: a RISC-V compatible CPU with a data path based on redundant number systems. IEEE Access 9, 43684–43700 (2021). https://doi.org/10.1109/ACCESS.2021.3063238

    Article  Google Scholar 

  28. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

Download references

Acknowledgement

We would like to express our gratitude to Elektronische Fahrwerksysteme GmbH for supporting this work. Furthermore, we are grateful to Lauterbach GmbH for their loan of an Off-chip Serial Trace device. This project would not have been feasible without such a device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Fricke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fricke, F. et al. (2022). Application Runtime Estimation for AURIX Embedded MCU Using Deep Learning. In: Orailoglu, A., Reichenbach, M., Jung, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2022. Lecture Notes in Computer Science, vol 13511. Springer, Cham. https://doi.org/10.1007/978-3-031-15074-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15074-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15073-9

  • Online ISBN: 978-3-031-15074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics