Skip to main content

A Smart HW-Accelerator for Non-uniform Linear Interpolation of ML-Activation Functions

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13511))

Included in the following conference series:

  • 1409 Accesses

Abstract

The compulsive nonlinearity in neural networks (NN) is introduced by well-known nonlinear functions called activation functions. Performing AI-inferences on edge devices calls for efficient approximation of those complex functions on highly restrictive hardware (HW) platforms. When designing such systems, balancing area, footprint and power consumption at an application appropriate latency is key. To address those challenges, we propose a HW-based interpolation component capable of approximating arbitrary mathematical functions. A combinatorial search-based optimization algorithm is employed to find the optimal set of interpolation points for a set of functions while also considering non-uniform distributions. The proposed solution is accompanied by a Python-based HW generator, that facilitates the process of deploying software-computed search results on HW and provides room for generating different flavors of application-optimized HW. In an effort to reduce area footprint and delay, the proposed approach exploits symmetry and biased symmetry properties of functions and applies bit width optimizations to reduce the size of the utilized computational units. Additionally, property-aware reprogrammable solutions for multifunctional use cases are incorporated into our design. Experimental analyses show that our proposed method permits achieving better area utilization and deviation error results than state-of-the-art implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks. arXiv preprint arXiv:1412.6830 (2014)

  2. Amin, H., Curtis, K., Hayes-Gill, B.: Piecewise linear approximation applied to nonlinear function of a neural network. IEEE Proc. Circuits Dev. Syst. 144(6), 313 (1997). https://doi.org/10.1049/ip-cds:19971587

    Article  Google Scholar 

  3. Chandra, M.: Hardware implementation of hyperbolic tangent function using catmull-rom spline interpolation. arXiv preprint arXiv:2007.13516 (2020)

  4. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3642–3649. IEEE (2012)

    Google Scholar 

  5. Duren, R., Marks, R., Reynolds, P., Trumbo, M.: Real-time neural network inversion on the SRC-6e reconfigurable computer. IEEE Trans. Neural Networks 18(3), 889–901 (2007). https://doi.org/10.1109/tnn.2007.891679

  6. Ecker, W., Schreiner, J.: Introducing model-of-things (mot) and model-of-design (mod) for simpler and more efficient hardware generators. In: 2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), pp. 1–6 (2016). https://doi.org/10.1109/VLSI-SoC.2016.7753576

  7. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks, September 2017

    Google Scholar 

  8. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: training neural networks with low precision weights and activations. J. Mach. Learn. Res. 18(1), 6869–6898 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Kumar, P.A.: FPGA implementation of the trigonometric functions using the CORDIC algorithm. In: 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS). IEEE, March 2019. https://doi.org/10.1109/icaccs.2019.8728315

  10. Li, Z., Zhang, Y., Sui, B., Xing, Z., Wang, Q.: Fpga implementation for the sigmoid with piecewise linear fitting method based on curvature analysis. Electronics 11(9), 1365 (2022)

    Article  Google Scholar 

  11. Lin, M.H., Carlsson, J.G., Ge, D., Shi, J., Tsai, J.F.: A review of piecewise linearization methods. Math. Probl. Eng. 2013, 1–8 (2013). https://doi.org/10.1155/2013/101376

    Article  MathSciNet  MATH  Google Scholar 

  12. Muscedere, R., Dimitrov, V., Jullien, G., Miller, W.: Efficient techniques for binary-to-multidigit multidimensional logarithmic number system conversion using range-addressable look-up tables. IEEE Trans. Comput. 54(3), 257–271 (2005). https://doi.org/10.1109/tc.2005.48

  13. Namin, A.H., Leboeuf, K., Muscedere, R., Wu, H., Ahmadi, M.: Efficient hardware implementation of the hyperbolic tangent sigmoid function. In: 2009 IEEE International Symposium on Circuits and Systems. IEEE, May 2009. https://doi.org/10.1109/iscas.2009.5118213

  14. Piazza, F., Uncini, A., Zenobi, M.: Neural networks with digital LUT activation functions. In: Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan). IEEE (1993). https://doi.org/10.1109/ijcnn.1993.716806

  15. Raut, G., Rai, S., Vishvakarma, S.K., Kumar, A.: A CORDIC based configurable activation function for ANN applications. In: 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, July 2020. https://doi.org/10.1109/isvlsi49217.2020.00024

  16. Tommiska, M.: Efficient digital implementation of the sigmoid function for reprogrammable logic. IET Proc. Comput. Digital Tech. 150(6), 403 (2003). https://doi.org/10.1049/ip-cdt:20030965

    Article  Google Scholar 

  17. Tsmots, I., Skorokhoda, O., Rabyk, V.: Hardware implementation of sigmoid activation functions using FPGA. In: 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). IEEE, February 2019. https://doi.org/10.1109/cadsm.2019.8779253

  18. Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans. Electron. Comput. EC-8(3), 330–334 (1959). https://doi.org/10.1109/tec.1959.5222693

  19. Zhang, M., Vassiliadis, S., Delgado-Frias, J.: Sigmoid generators for neural computing using piecewise approximations. IEEE Trans. Comput. 45(9), 1045–1049 (1996). https://doi.org/10.1109/12.537127

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Part of the work has been funded by the German Federal Ministry of Education and Research (BMBF) as part of the research project Scale4Edge (16ME0122K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Prebeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prebeck, S., Lawand, W., Vaddeboina, M., Ecker, W. (2022). A Smart HW-Accelerator for Non-uniform Linear Interpolation of ML-Activation Functions. In: Orailoglu, A., Reichenbach, M., Jung, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2022. Lecture Notes in Computer Science, vol 13511. Springer, Cham. https://doi.org/10.1007/978-3-031-15074-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15074-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15073-9

  • Online ISBN: 978-3-031-15074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics