
Serving Hybrid-Cloud SQL Interactive Queries
at Twitter

Chunxu Tang, Beinan Wang, Huijun Wu, Zhenzhao Wang, Yao Li, Vrushali
Channapattan, Zhenxiao Luo, Ruchin Kabra, Mainak Ghosh, Nikhil Kantibhai

Navadiya, Prachi Mishra, Prateek Mukhedkar, and Anneliese Lu

Twitter, Inc., San Francisco, United States
{chunxut, beinanw, huijunw, zhenzhaow, yaoli, vrushali, zluo, rkabra,

mghosh, nnavadiya, prachim, pmukhedkar, anneliesel}@twitter.com

Abstract. The demand for data analytics has been consistently increas-
ing in the past years at Twitter. In order to fulfill the requirements and
provide a highly scalable and available query experience, a large-scale
in-house SQL system is heavily relied on. Recently, we evolved the SQL
system into a hybrid-cloud SQL federation system, compliant with Twit-
ter’s Partly Cloudy strategy. The hybrid-cloud SQL federation system is
capable of processing queries across Twitter’s data centers and the public
cloud, interacting with around 10PB of data per day.
In this paper, the design of the hybrid-cloud SQL federation system
is presented, which consists of query, cluster, and storage federations.
We identify challenges in a modern SQL system and demonstrate how
our system addresses them with some important design decisions. We
also conduct qualitative examinations and summarize instructive lessons
learned from the development and operation of such a SQL system.

Keywords: SQL · cloud · query engine · big data.

1 Introduction

Twitter runs multiple large Hadoop clusters of over 300PB of data, which are
among the biggest in the world [10]. Billions of events are ingested into these
clusters per minute [47]. Twitter’s data platform operates these clusters and
exerts significant effort in pursuing system scalability and availability to fulfill
the data analytics on such large volume data inventory and high throughput
data flow. Data customers send tens of thousand queries for data analytics on
this huge amount of data daily, usually in SQL statements.

At Twitter, a typical OLAP (Online Analytical Processing) workload mainly
contains ad-hoc queries, empowering a wide range of use cases from internal
tooling reporting to ads click-rate analysis. The query latencies range from sec-
onds to minutes. There are various query types observed. As Figure 1 indicates,
SELECT statements dominate the distribution of SQL statements in a typical
Twitter’s OLAP workload. Users leverage this type of SQL statements to query
various datasets stored in the persistent storage. Besides SELECT statements, a

ar
X

iv
:2

20
7.

04
19

9v
1 

 [
cs

.D
B

] 
 9

 J
ul

 2
02

2



2 C. Tang et al.

typical Twitter’s OLAP workload also contains CREATE statements to create
temporary tables or material views, UPDATE statements to update records in
temporary tables1, and OTHER statements mainly for metadata querying.

0

20

40

60

80

SELECT CREATE UPDATE OTHER

Type of SQL statements

P
ro

p
o

rt
io

n
 (

%
)

Fig. 1: Distribution of SQL statements from a typical Twitter’s OLAP workload
in a three-month session.

Such a SQL system needs to be capable of processing a large number of
queries in parallel. Previously, we implemented an in-house SQL system in Twit-
ter’s data center (aka private cloud) with hundreds of worker nodes, accompa-
nied by internal Twitter services such as monitoring and logging. At present, to
enjoy benefits at a global scale such as faster capacity provisioning, a broader
ecosystem of tools and services in the cloud, and enhanced disaster recovery
capabilities, Twitter engineering is embarking on an effort to migrate ad-hoc
clusters to the GCP (Google Cloud Platform), aka the “Partly Cloudy” [34].
Partly Cloudy extends Twitter’s environment into the public cloud, as a first-
class offering alongside on-premises platform services. Under the umbrella of
Partly Cloudy, multiple large-scale data analytics jobs or systems [27,39,49,50]
have been migrated to or supported in the cloud.

The hybrid-cloud environment brings challenges, leading to a fundamental
architectural shift for an OLAP system. From our development and operational
experience, a modern unified SQL system should handle a series of challenges:

– Querying heterogeneous data sources in the application layer. With
the growth of the business, more use cases emerged at Twitter, leading
to querying heterogeneous data sources, usually processed by different on-
premises or cloud query systems with different configurations and interfaces.
For example, data scientists from the Health team query data stored in

1 At Twitter, SQL system users cannot create or update datasets except exclusive
temporary tables under personal accounts. Due to the requirements for data lineage
and governance, only data pipeline system accounts have write access to public
datasets. SQL individual users only have read access.



Serving Hybrid-Cloud SQL Interactive Queries at Twitter 3

HDFS (Hadoop Distributed File System), processed by HDFS-compatible
SQL engines such as Hive [42], SparkSQL [13], and Presto [36], to analyze
hate speech in the social media platform. Data engineers from the Ads team
query data stored in GCS (Google Cloud Storage), processed by cloud query
engines such as Presto on GCP, to validate engagement logging data ex-
istence and correctness of data schemas. Infrastructure engineers from the
Tooling team gain insights from the usage data stored and processed in
MySQL and create shareable dashboards. Use cases may also involve query-
ing and joining tables from various data sources. A modern SQL system
should support querying heterogeneous data sources in a unified interface.

– Horizontal scaling in the computation layer. We have witnessed a
boost in the number of daily queries processed by Twitter’s SQL system
in the recent few years. From our operational experience, vertical scaling
cannot handle this large number of analytical queries, which can cost a con-
siderable amount of resources2. A modern SQL system usually prefers the
horizontal scaling approach to serve analytical queries [37]. In addition, as
an on-premises data center usually has a limited capacity, the horizontal
scaling may need to cross data centers or on-premises/cloud environments.
As a result, the SQL system needs to tackle the challenges brought by hor-
izontal scaling, such as cluster orchestration, workload balancing, and fault
tolerance.

– Heterogeneous storage systems in the storage layer. With the advent
of the Big Data era, large-scale storage systems are developed to fulfill the
requirements of archiving the scaling volume of data while also maintain-
ing data availability and consistency. The variety of on-premises and cloud
data storage systems also poses challenges for a modern SQL system. Oper-
ating heterogeneous storage systems is a major challenge we have faced in
developing and operating Twitter’s SQL system. In a modern SQL system,
no matter where the dataset is stored: on-premises storage clusters and/or
cloud storage systems, query engines should access the dataset through a
unified interface without memorizing the concrete physical paths of target
datasets.

To overcome these challenges, Twitter engineering teams implement a hybrid-
cloud SQL federation system, which processes around 10PB of data daily in
production. This paper presents the evolution of the SQL system at Twitter
including query federation, cluster federation, and storage federation. It extends
our prior work [41] from multiple perspectives. First of all, we analyze a typi-
cal Twitter’s OLAP workload, whose query distribution indicates the technical
design direction for the SQL federation system. Second, we discuss the ratio-
nales behind some design choices in detail such as adopting Zeppelin and Presto
for query federation. Third, we explain the unified cluster provisioning strategy
with some practical examples, supporting the SQL system deployment across

2 From an analysis of a typical Twitter OLAP workload in three months, 19.2% of
queries consume more than 1TB peak memory.



4 C. Tang et al.

on-premises and cloud environments. Fourth, as a SQL federation system spans
a wide range of components, we discuss related work from more perspectives
such as data integration and virtualization. Finally, we report some key findings
during the development and operation of such a SQL system: Ad-hoc resource-
consuming queries are a challenge for scaling a SQL federation system; A central-
ized hybrid-cloud IAM (Identity and Access Management) can help reduce the
technical complexity of implementing IAM across the public and private cloud.

The remainder of this paper is organized as follows. We describe the archi-
tectural design and implementation of the hybrid-cloud SQL federation system
in Section 2 to address the aforementioned challenges, discuss related work in
Section 3, and reflect on lessons learned in a diverse set of contexts in Section 4.
Section 5 concludes the paper.

2 SQL Federation System Design & Implementation

2.1 Overview

Figure 2 depicts the architectural design of the hybrid-cloud SQL federation
system at Twitter. There are three components: query federation, cluster fed-
eration, and storage federation. Each federation provides a unified logical view
that hides the internal implementation details. This enhances system flexibility
and resilience because as long as the logical interface is consistent, any changes
in a specific component will cause minimal implementation changes in other
federation components.

Cluster A:
on premises

Cluster B:
cloud

Query 
Layer

Docker +
Kubernetes

Aurora +
Mesos

Metadata:
on premises

Data storage:
on premises

Metadata:
cloud

Data storage: 
cloud

Cluster 
Layer

Storage 
Layer

SQL

Programming
API

Query Federation Cluster Federation Storage Federation

Provisioning

Fig. 2: Overview of the hybrid-cloud SQL federation system in three layers.

Query federation. This exposes a unified query layer to customers such that
one interface rules multiple query clusters for heterogeneous data sources. Query
federation consists of a SQL component and a programming API component.
At Twitter, the SQL component supports basic ANSI SQL semantics as well as
some Twitter-specific features implemented into UDFs (user-defined functions).
The programming API component enables auxiliary flexible programming fea-
tures. User requests are eventually converted to SQL and passed to the cluster
federation.



Serving Hybrid-Cloud SQL Interactive Queries at Twitter 5

Cluster federation. This provides a unified cluster layer to the query fed-
eration, resolving the challenge of horizontal scaling. It exposes a single entry
point, a router service, and hides the cluster details, which reduces the devel-
opment and operation cost. The router service acts as the coordinator of SQL
engine clusters, helping to schedule queries across the clusters and balancing the
workloads among the clusters. Fault tolerance is also improved by forwarding
requests only to available clusters when a cluster fails and is offline.

Storage federation. This offers a unified view of datasets stored in different
archival systems. At Twitter, we are heavily leveraging HDFS as the major on-
premises distributed storage platform. In a cloud environment like GCP, we use
GCS as the core storage system. The unified layer provides a unique Twitter
resolved path for each dataset stored in both on-premises and cloud, entirely
getting rid of the burden of memorizing accurate physical locations for datasets.

2.2 Query Federation

The query federation fulfills three goals. First, as a user-facing front-end, it
converts user inputs to SQL and feeds SQL to the cluster federation. Second, it
defines datasets in SQL such that users can locate data from different sources
with a uniform approach. Third, it provides UI for interaction and visualization.
We leverage Zeppelin [4] to implement the first and third goals, while the second
goal is achieved with the help of Presto in the cluster federation. Apache Zeppelin
is a web-based notebook service that enables interactive data analytics. Users
can fetch data results by sending SQL queries in paragraphs and easily visualize
the results with multiple built-in charts or third-party libraries supported by a
pluggable framework called Helium [7]. It should be noted that the SQL front-
end design is not limited to Zeppelin, but can be generalized to other notebook
tools such as JupyterLab [8].

Figure 3 illustrates some SQL examples of query federation in a Zeppelin
notebook. In the figure, the first query and the second one are pointing to the
on-premises and cloud SQL clusters respectively, identified by a prefix to flag
whether the query should be processed in Twitter’s data center or public cloud.
No extra configuration is required. Besides explicitly setting dataset locations
with prefixes, we are also implementing an automatic data recognition feature
by parsing the received SQL statement, extracting target queried tables, and
fetching table locality information from Twitter’s unified data access layer [23].
If the dataset is located in the HDFS, the query will be sent to the on-premises
SQL engine cluster; if the dataset resides in the cloud, the query will be forwarded
to the cloud cluster; if the dataset locates in both HDFS and GCS, we prefer to
process the query in the cloud due to more compute resources.

Besides accessing data within one data source, the third SQL statement in
Figure 3 refers to a federated query, joining two tables from HDFS and MySQL.
A federated query can refer to joining tables scattered in various data sources.
Thus, a query processing engine that can access various data sources should
be adopted in the SQL federation system. We adopted Presto for this scenario
due to several reasons. First of all, Presto separates compute and storage which



6 C. Tang et al.

Fig. 3: Three SQL query federation examples in a Zeppelin notebook. All SQL
statements are from the TPC-H benchmark [9].

allows flexible storage, fitting Twitter’s scenario where hundreds of petabytes of
data has been stored in HDFS, so it is extremely challenging to migrate data
to another storage. Second, Presto is a distributed SQL query engine targeting
“SQL on everything”. With a Connector API communicating with external data
stores, data is fetched and then converted to the unified internal Presto data
types, so that further query processing, such as joining tables from different data
sources, can be accomplished. Lastly, Presto supports interactive queries whose
latencies range from seconds to minutes and exposes a web service endpoint,
differentiating it from some other query engines such as Hive and Spark which
process SQL queries as batch jobs.

2.3 Cluster Federation

Architectural Design Figure 4 depicts the architectural design of cluster fed-
eration with the following components:

Router. The router service is the single entry point and the core of the
cluster federation, which exposes a unified interface to the query tools, hides
cluster details, and routes requests to concrete clusters. Meanwhile, it helps to
balance the workloads among the clusters. Our prior SQL system suffered from
imbalanced workloads as the clusters were exposed directly to clients. Some
clients may send too many queries to a specific cluster, exhausting the compute
resources of that cluster, but leaving other clusters idle. The hybrid-cloud SQL
federation system harnesses multiple routing algorithms such as round-robin and
random selection. We are also testing more complicated load-based scheduling
algorithms with the help of a query cost predictor.

We separate SQL engine cluster endpoint information to a central storage,
making the router service stateless. As a result, we can easily scale the service



Serving Hybrid-Cloud SQL Interactive Queries at Twitter 7

Router

Cluster A: on premises

Cluster B: cloud

Query Cost Predictor

Cloud Storage

Query
On premises

Storage

Cluster Federation Storage Federation

Provisioning

Fig. 4: Architectural design of the cluster federation.

horizontally by deploying multiple router instances. These instances share the
same router endpoint and hide proxy details from users. We utilize scheduling
algorithms such as the random choice to balance the load on these instances.
Even when an instance fails, other router instances can still route requests to
SQL engine clusters. This automatic service discovery and recovery improve the
availability and avoids the single point of failure on the router.

Query cost predictor. This is a preditor service to forecast the CPU and
memory resource usages of each SQL query. It applies machine learning tech-
niques to train models learning from historical SQL queries. The predictor details
are beyond the scope of this paper and discussed in a separate paper [40].

SQL engine cluster. Presto is the query engine utilized in a SQL engine
cluster. Each Presto cluster consists of a coordinator node and one or more
worker nodes. A SQL engine cluster may be deployed in Twitter’s data center
or cloud. When it is deployed in Twitter’s data center, it queries data stored
in on-premises services such as HDFS. By contrast, when it is in the GCP, it
queries data stored in the GCS. The SQL engine clusters do not query data
across data centers due to performance concerns.

With the cluster federation, users only view logical clusters. When a cluster
fails and is offline, the router will remove it from the available cluster list and will
not route any requests to this cluster. When the cluster recovers from the failure
and is back online, the router will find the cluster through service discovery,
mark it as available, and route requests to this cluster. This also improves the
availability and fault tolerance, mitigating the operation pain we have faced in
the prior SQL system with separate clusters.

Cluster Provisioning In a hybrid-cloud environment, a service can be de-
ployed in both the private cloud and public cloud. This poses challenges in the
product release and deployment as we have to operate two suites of toolchains.

In Twitter’s data centers, each service is hosted in an Aurora container,
enabling running services and cron jobs on top of Mesos [22], a distributed system



8 C. Tang et al.

kernel. Mesos abstracts compute resources away from specific machines to treat
the data center like one big computer. Each job is defined and described in
Aurora DSL [1]. As developers need to upload applications before deployment,
Twitter engineers also develop Packer [21], a package versioning and storage
system, to manage the applications.

By contrast, in a cloud platform such as GCP, we wrap each service into a
Docker image and deploy it into the Kubernetes platform, aka GKE (Google
Kubernetes Engine) in the GCP. Kubernetes offers a declarative job specifica-
tion, which can be described in YAML. For example, the simplified code snippet
shown below refers to creating a SQL system demo in the Kubernetes.

1 apiVersion: compute.twitter.com/v1
2 kind: TwitterSetDeployment
3 metadata:
4 namespace: sqlsystem
5 name: sqlsystem-devel
6 spec:
7 replicas: 1
8 template:
9 metadata:

10 spec:
11 priorityClassName: preemptible
12 containers:
13 - name: sqlsystem
14 image: sqlsystem
15 imagePullPolicy: Always
16 command:
17 - /bin/bash
18 - -c
19 args:
20 - /usr/lib/jvm/java-1.8.0-twitter/bin/java -jar sqlsystem.jar -instance=––mesos.instance˝˝

-admin.port=fl:8080fl↪→
21 resources:
22 limits:
23 cpu: 1000m
24 memory: 2Gi
25 ephemeral-storage: 2Gi
26 ports:
27 - containerPort: 8080
28 name: http
29 - containerPort: 8080
30 name: service

To fill the gaps between the two cluster provisioning strategies and resolve
the challenges of provisioning in a hybrid-cloud environment, Twitter engineers
implement an abstraction layer on top of Mesos and Kubernetes, only exposing
the Aurora DSL to describe jobs deployed in both private and public cloud.

The following is a simplified example of describing the above GCP job in
Aurora DSL, where each key-value pair in YAML is translated into Aurora DSL:

1 resources = Resources(cpu = 1.0, ram = 2 * GB, disk = 2 * GB)
2 port=fl8080fl
3 jobs = [
4 BasicTwitterSet(
5 cluster = flcluster1fl,
6 role = flsqlsystemfl,
7 environment = fldevelfl,



Serving Hybrid-Cloud SQL Interactive Queries at Twitter 9

8 name = flsqlsystemfl,
9 requires = [Announcer()],

10 replicas = 1,
11 spec = PodSpec(
12 priorityClassName=flpreemptiblefl,
13 containers = [
14 KubernetesContainer(
15 name=flsqlsystemfl,
16 image=flsqlsystemfl,
17 command=JVMProcess(
18 name = flrun˙sqlsystemfl,
19 jvm = Java8,
20 arguments = fl-jar sqlsystem.jar -instance=––mesos.instance˝˝ -admin.port=”:%s”fl %

port,↪→
21 resources=resources
22 ),
23 resources = resources,
24 ports = [
25 ContainerPort(name = [flhttpfl, flservicefl], containerPort = port),]
26 )]
27 ),
28 )
29 ]

This unified job configuration abstraction greatly reduces the operation cost.
We only devise one suite of toolchains but with different configuration details
for Twitter’s data center and public cloud.

Fig. 5: Unified UI for cluster federation.

Unified Interface To ease the administration of SQL engine clusters, we build
an aggregated UI, shown in Figure 5, on top of the original Presto UI. The
UI aggregates the status of all SQL engine clusters, sums the running queries,
and monitors the active workers. Moreover, we can dive deeper into one specific
cluster to investigate the performance metrics, collected into a unified dashboard
shown in Figure 6. This panel visualizes metrics, including query failures, cluster
memory, running queries, etc., collected in the past two weeks.



10 C. Tang et al.

(a) SQL query failures in two weeks.

(b) The 5 minutes moving average of execution time P90
(90th percentile) in two weeks.

(c) Cluster memory usages in two weeks.

(d) SQL engine memory pool in two weeks.

Fig. 6: Monitoring and alerting of one SQL engine (Presto) cluster.



Serving Hybrid-Cloud SQL Interactive Queries at Twitter 11

2.4 Storage Federation

To fulfill both scaling data and high availability requirements, Twitter engineers
maintain storage clusters in both Twitter’s data center and public cloud. Figure 7
depicts the high-level design of the storage federation platform, which is backed
by hundreds of thousands of data replication jobs. This platform contains an
unified view for data stored in on-premises HDFS clusters and a cloud storage
system (GCS in the GCP).

Namespace1 Namespace2

Cluster X Cluster Y

Namespace1

Data Center 1

Cluster Z

Namespace1 Namespace2

Data Center 2 Cloud Storage
Connector

Cloud Storage

Twitter's View FileSystem

Replicator

Bucket on GCS            gs://logs.partly-cloudy

Connector Path            /logs/partly-cloudy

Twitter Resolved Path  /gcs/logs/partly-cloudy

Twitter Resolved Path   /DataCenter-1/cluster-X/logs/partly-cloudy

Path on Federated HDFS cluster  viewfs://cluster-X/logs/partly-cloudy

Path on HDFS cluster  hdfs://cluster-X-nn:8020/logs/partly-cloudy

Fig. 7: Architectural design of the storage federation.

On-premises HDFS. Twitter’s data platform operates multiple HDFS clus-
ters across data centers, shown as the left part in Figure 7. Multiple namespaces
are also required due to scalability and use case isolation requirements. We scale
HDFS by federating these namespaces with user-friendly paths instead of long
complicated URIs [14]. As shown in Figure 7, first, the original on-premises
data path is hdfs://cluster-X-nn:8020/logs/partly-cloudy (nn refers to the na-
menode in HDFS), indicating the data resides in Cluster X in Data Center 1,
under the namespace logs. Second, we leverage Hadoop ViewFs [6] to provide
a single view across namespaces, starting with viewfs://. So the original path
will become viewfs://cluster-X/logs/partly-cloudy. Finally, we extend the ViewFs
and implement Twitter’s View FileSystem, offering a unified user-friendly path
(/DataCenter-1/cluster-X/logs/partly-cloudy in Figure 7) and enabling native
HDFS access. A replicator service is also created to help access data stored in
different locations.

Cloud storage (GCS). Because of the large data volume and use case iso-
lation, we maintain thousands of GCS buckets at Twitter. We also leverage the
View FileSystem abstraction to hide GCS details behind the storage interface.



12 C. Tang et al.

(a) Details of a dataset in on-premises HDFS.
ain

(b) Details of a dataset in GCS.

Fig. 8: Unified UI for datasets stored in HDFS and GCS.



Serving Hybrid-Cloud SQL Interactive Queries at Twitter 13

The cloud storage connector is utilized to interact with GCS via Hadoop APIs.
We apply the RegEx-based path resolution to resolve the GCS bucket path, by
dynamically creating mountable mapping on-demand in Twitter’s View FileSys-
tem. As shown in Figure 7, similar to HDFS, the GCS bucket gs://logs.partly-
cloudy is finally resolved as /gcs/logs/partly-cloudy.

As a result, the storage federation only exposes standard unique paths of
datasets, no matter they reside in the on-premises HDFS clusters or GCS. In
addition, Twitter engineers maintain a metadata service, connected with these
storage systems, aiming to identify the closest location of the target dataset and
return its standard path to query engines. For example, in Figure 7, querying the
same partly-cloudy dataset, if the query engine is in a Twitter’s data center, the
on-premises path /DataCenter-1/cluster-X/logs/partly-cloudy will be returned.
By contrast, if the query engine is in the cloud, the cloud path /gcs/logs/partly-
cloudy will be returned.

To view dataset configuration details, Twitter engineers create a unified UI,
shown in Figure 8, with segment support for files stored in various physical loca-
tions. Users can thus view different locations for the same dataset. Specifically,
Figure 8a illustrates details of the query log dataset of Presto stored in an on-
premises HDFS cluster; Figure 8b points to details of the same dataset stored
in the GCS. Figures also show segment delays and segment block information.

3 Related Work

A large-scale SQL system involves a wide range of related domains. Here, we
discuss related work in each domain.

3.1 Data Integration and Virtualization

Data integration involves aggregating data from heterogeneous data stores and
in different formats to realize analytics on a huge amount of data. This is usually
tackled by either transforming the data to a consistent data format and physi-
cally placing data in a data warehouse, or creating a virtualized middleware and
offering a unified logical view of datasets, namely data virtualization.

Recently, thanks to advantages such as high scaling capability and on-the-
fly processing [32], some research work emerged in the data virtualization do-
main, supporting ad-hoc queries on heterogeneous data stores. For example,
Lawrence [25] proposed a generic standards-based architecture on top of both
SQL and NoSQL systems, verified by MySQL and MongoDB. The virtualization
system translates SQL queries into source-specific APIs, with minimal perfor-
mance overhead reported. The author [26] later extended this work to support
distributed semi-joins. Similarly, Vathy-Fogarassy and Hugyák [44] implemented
a uniform data access platform covering heterogeneous data stores including SQL
and NoSQL databases. Their solution does not support joins across data sources
but only collects data from these data sources. More recently, Mami et al. [29]
established a semantic data lake to access and process heterogeneous data at



14 C. Tang et al.

scale. Aleyasen et al. [12] proposed a context-aware query router, aiming to ad-
dress the data replication obstacle in on-premises to cloud migration, similar to
the router service we implemented in Twitter’s data platform.

Compared with prior work, Twitter’s hybrid-cloud SQL federation system re-
lies on both the data warehouse (transforming analytical data to the Parquet [19]
format and storing them in some centralized storage clusters such as on-premises
HDFS and cloud-based GCS) and data virtualization solutions (creating unified
logical views for SQL applications, computation, and storage).

3.2 SQL Systems

With the increasing volume of data, many distributed SQL engines, targeted for
analyzing Big Data, emerged in the recent decade. For example, Apache Hive [42]
is a data warehouse built on top of Hadoop, providing a SQL-like interface for
data querying and a warehousing solution to address some issues of MapReduce
[17,18]. Spark SQL [13] is a module integrated with Apache Spark, powering
relational processing to Spark data structures, with a highly extensible optimizer,
Catalyst. Presto [36], originally developed by Facebook, is a distributed SQL
engine, targeting “SQL on everything”. It can query data from multiple sources
which is a major advantage over other SQL engines. It now also supports real-
time analytics at scale [28]. Twitter’s SQL federation system described in this
paper chooses Presto as the core SQL engine thanks to its low latency, high
flexibility, and high extensibility. Procella [15] is a SQL query engine, facilitated
by YouTube, serving hundreds of billions of queries per day.

With the advent of the public cloud, some cloud-based commercial SQL prod-
ucts rose in popularity in the recent decade. For example, Google BigQuery [5]
(a public implementation of Dremel [30,31]) offers a cloud-based, fully-managed,
and serverless data warehouse. Similarly, Snowflake [16] provides a multi-tenant,
transactional, and elastic system with full SQL support for both semi-structured
and schema-less data. Amazon Redshift [20] applies a classic shared-nothing ar-
chitecture with Vertica [24]-similar compression techniques, acting as a fully-
managed PB-scale data warehouse solution in AWS. Azure Synapse Analytics
[11] separates compute and storage for cloud-native execution, bringing together
data warehousing and big data workloads. Alibaba AnalyticDB [51,48] offers
real-time query processing in hundreds of milliseconds and decouples write and
access paths to fit large-scale data analytics.

3.3 Cluster Management

The need for efficient cluster management has led to the creation of various sys-
tems in the past decade. YARN [45] is the resource management system used
in Hadoop, abstracting cluster management from computation jobs. Google de-
veloped a large-scale unified cluster management system, Borg [46,43], running
hundreds of thousands of jobs. It is later open-sourced as Kubernetes. Google also
created Omega [35], an offspring of Borg to improve the software engineering.



Serving Hybrid-Cloud SQL Interactive Queries at Twitter 15

Mesos [22] is a similar resource-sharing platform, used with Aurora configura-
tion Language [1] at Twitter. Facebook established Twine [38], formerly known
as Tupperware, to act as a large-scale resource-sharing infrastructure. As Twit-
ter engineering is migrating some service to the GCP, we use both Mesos and
Kubernetes for cluster deployment and management.

4 Lessons Learned

In this section, we recount some of the qualitative lessons we have learned from
the development and operation of the SQL federation system at Twitter.

System monitoring and logging in a hybrid-cloud environment are
vital. Although our hybrid-cloud SQL federation system almost always works
well, sometimes when the system goes wrong, it can be a headache to locate
the root cause. We also observed architectural differences between on-premises
and cloud environments, such as cluster provisioning and security enforcement.
An important design decision we have made is implementing a real-time moni-
toring system with metrics collection and an injectable logging system to trace
execution flows. The monitoring system provides a central platform to collect
predefined and user-customized metrics, serves observability dashboards/alerts,
and helps developers drill down to detailed metrics. Meanwhile, the injectable
logging system provides APIs to inject logging points into application source
code, collects the logs, and visualizes the execution flows.

The on-premises capacity planning experience cannot be directly
transferred to a hybrid-cloud environment. During the migration of parts
of on-premises workload to the cloud, we discovered that the capacity planning
experience cannot be easily reused and shared across data centers, due to varied
technical stacks and resource provisioning strategies. For example, one of our
early migrated use cases requires around 50 machines in Twitter’s data center
but needs around 60 to get comparable performance in the cloud, even though
all these machines are sharing similar hardware configuration. Based on the
lesson, we suggest additional prototypes for capacity planning and extra tuning
of service in a hybrid-cloud environment.

Ad-hoc resource-consuming queries are a challenge for scaling a
SQL federation system. In Twitter’s data platform, we observed that more
than 70% of interactive SQL queries can be completed in less than 1 minute.
But there is a small proportion (around 10%) of queries that cost lots of com-
pute resources and can cost as long as a few hours to complete. This fact poses
challenges in scaling our SQL system, as resource-consuming queries can rapidly
exhaust a SQL engine cluster’s compute resources. Furthermore, clusters across
data centers with different configurations complicate the optimization. We have
tried establishing a specific cluster for these resource-consuming queries, im-
plemented multiple scheduling algorithms in the router, and are testing more
complicated algorithms with forecasted query resource usages. This also implies
a future research direction about more intelligent scheduling on SQL queries with
high-variant resource usages across clusters under a hybrid-cloud environment.



16 C. Tang et al.

A centralized hybrid-cloud IAM (Identity and Access Manage-
ment) can help reduce the technical complexity of implementing IAM
across the public and private cloud. Identity and access management is a
crucial component of an enterprise-grade platform including a SQL system. IAM
aims to grant the right individuals access to appropriate services. At Twitter, the
on-premises SQL system utilizes LDAP (Lightweight Directory Access Protocol)
and Kerberos for authorization and authentication. By contrast, GCP dramati-
cally leverages access tokens from OAuth 2.0 for managing identity and access.
During the migration, the first solution we raised is to modify codebases of all
service components to support GCP IAM. However, later on, we figured out this
approach would cost much more complexity in the implementation than expected
as we need to explicitly support both LDAP and GSuite logins and management.
Given the extreme emphasis on data privacy and security at Twitter, we finally
came up with a hybrid-cloud IAM solution with a centralized IAM platform,
mapping all Twitter employee LDAP accounts to GSuite accounts with cor-
responding credentials implicitly, hidden from end-users. This design saved us
quarters of engineering effort to set up the IAM in the hybrid-cloud SQL system.

SQL is still one of the most widely used languages in data ana-
lytics. As a declarative language, SQL lets users focus on defining the data
analytics tasks without worrying about the specifics on how to complete these
tasks. Thanks to SQL’s high expressiveness in queries and large existing cus-
tomer bases, some execution engines previously without SQL support, such as
Druid [3] and Beam [2], began to support SQL on top of their native query layers.
In addition, some SQL variants, such as BigQuery ML [33], even introduced SQL
into machine learning use cases. From our observation, SQL is still widely used
in data analytics, although challenged by some competitive alternatives such as
Python. Python is more like a powerful supplement for SQL in data analytics
with its concise styles and extreme popularity in machine learning, instead of a
complete replacement.

5 Conclusion

Understanding and identifying challenges faced within a modern SQL system are
of ever-growing importance as there is a rapidly growing need for large-scale data
analytics. From our development and operational experience at Twitter’s data
platform, we presented querying heterogeneous data sources in the application
layer, horizontal scaling in the computation layer, and heterogeneous storage
systems in the storage layers are three crucial challenges in a modern central-
ized SQL platform, focusing on interactive queries whose latencies range from
seconds to minutes. We discussed the evolution of the hybrid-cloud SQL federa-
tion system in Twitter’s data platform, aiming to address these challenges. The
demonstrated hybrid-cloud SQL federation system overcomes these challenges
by implementing query federation, cluster federation, and storage federation,
with a unified logical view in each layer.



Serving Hybrid-Cloud SQL Interactive Queries at Twitter 17

We discussed some lessons we learned from developing, deploying, and op-
erating the SQL system. We found some differences such as capacity planning
and IAM in on-premises and cloud environments, which usually lead to extra
engineering effort. Additionally, from the observation on tens of millions of inter-
active queries at Twitter, most queries can be completed in less than 1 minute,
but around 10% of queries can cost many more compute resources to complete.
We saw the necessity of various solutions, such as load balancing and cluster
scaling, to tackle the challenge. Finally, we observed that SQL is still one of the
most widely used languages in data analytics. It has even been extended to the
machine learning domain. We hope these key findings could provide some deeper
insights for building a large-scale interactive query platform.

Acknowledgment

Twitter’s SQL federation system is a complicated project that has evolved for
years. We would like to express our gratitude to everyone who has served on
Twitter’s Interactive Query team, including former team members Hao Luo,
Yaliang Wang, Da Cheng, Fred Dai, and Maosong Fu. We also appreciate Pra-
teek Mukhedkar, Vrushali Channapattan, Daniel Lipkin, Derek Lyon, Srikanth
Thiagarajan, Jeremy Zogg, and Sudhir Srinivas for their strategic vision, direc-
tion, and support to the team. Finally, we thank Erica Hessel, Alex Angarita
Rosales, and the anonymous ECSA reviewers for their informative comments,
which considerably improved our paper.

References

1. Aurora configuration (2017), http://aurora.apache.org/documentation/

latest/reference/configuration-tutorial/

2. Apache Beam SQL (2021), https://beam.apache.org/documentation/dsls/sql/
overview/

3. Apache Druid SQL (2021), https://druid.apache.org/docs/latest/querying/
sql.html

4. Apache Zeppelin (2021), https://zeppelin.apache.org/
5. Google BigQuery (2021), https://cloud.google.com/bigquery
6. Hadoop ViewFs (2021), https://hadoop.apache.org/docs/stable/hadoop-

project-dist/hadoop-hdfs/ViewFs.html

7. Helium packages (2021), https://zeppelin.apache.org/helium_packages.html
8. Jupyter project (2021), https://jupyter.org/
9. TPC-H benchmark (2021), http://www.tpc.org/tpch/

10. Agrawal, P.: A new collaboration with Google Cloud (2018), https:

//blog.twitter.com/engineering/en_us/topics/infrastructure/2018/a-

new-collaboration-with-google-cloud.html

11. Aguilar-Saborit, J., Ramakrishnan, R., Srinivasan, K., Bocksrocker, K., Alagian-
nis, I., Sankara, M., Shafiei, M., Blakeley, J., Dasarathy, G., Dash, S., et al.: PO-
LARIS: The distributed SQL engine in Azure Synapse. Proceedings of the VLDB
Endowment 13(12), 3204–3216 (2020)

http://aurora.apache.org/documentation/latest/reference/configuration-tutorial/
http://aurora.apache.org/documentation/latest/reference/configuration-tutorial/
https://beam.apache.org/documentation/dsls/sql/overview/
https://beam.apache.org/documentation/dsls/sql/overview/
https://druid.apache.org/docs/latest/querying/sql.html
https://druid.apache.org/docs/latest/querying/sql.html
https://zeppelin.apache.org/
https://cloud.google.com/bigquery
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/ViewFs.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/ViewFs.html
https://zeppelin.apache.org/helium_packages.html
https://jupyter.org/
http://www.tpc.org/tpch/
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2018/a-new-collaboration-with-google-cloud.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2018/a-new-collaboration-with-google-cloud.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2018/a-new-collaboration-with-google-cloud.html


18 C. Tang et al.

12. Aleyasen, A., Soliman, M.A., Antova, L., Waas, F.M., Winslett, M.: High-
throughput adaptive data virtualization via context-aware query routing. In: 2018
IEEE International Conference on Big Data (Big Data). pp. 1709–1718. IEEE
(2018)

13. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X., Kaf-
tan, T., Franklin, M.J., Ghodsi, A., et al.: Spark SQL: Relational data processing
in Spark. In: Proceedings of the 2015 ACM SIGMOD international conference on
management of data. pp. 1383–1394 (2015)

14. Barga, R.: Hadoop filesystem at Twitter (2015), https://blog.twitter.com/

engineering/en_us/a/2015/hadoop-filesystem-at-twitter

15. Chattopadhyay, B., Dutta, P., Liu, W., Tinn, O., McCormick, A., Mokashi, A.,
Harvey, P., Gonzalez, H., Lomax, D., Mittal, S., Ebenstein, R.A., Mikhaylin, N.,
ching Lee, H., Zhao, X., Xu, G., Perez, L.A., Shahmohammadi, F., Bui, T., McKay,
N., Lychagina, V., Elliott, B.: Procella: Unifying serving and analytical data at
YouTube. Proceedings of the VLDB Endowment 12(12), 2022–2034 (2019)

16. Dageville, B., Cruanes, T., Zukowski, M., Antonov, V., Avanes, A., Bock, J., Clay-
baugh, J., Engovatov, D., Hentschel, M., Huang, J., et al.: The Snowflake elastic
data warehouse. In: Proceedings of the 2016 International Conference on Manage-
ment of Data. pp. 215–226 (2016)

17. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

18. Dean, J., Ghemawat, S.: MapReduce: A flexible data processing tool. Communi-
cations of the ACM 53(1), 72–77 (2010)

19. Dem, J.L.: Graduating apache parquet (2015), https://blog.twitter.com/

engineering/en_us/a/2015/graduating-apache-parquet.html

20. Gupta, A., Agarwal, D., Tan, D., Kulesza, J., Pathak, R., Stefani, S., Srinivasan,
V.: Amazon Redshift and the case for simpler data warehouses. In: Proceedings
of the 2015 ACM SIGMOD international conference on management of data. pp.
1917–1923 (2015)

21. Hashemi, M.: The infrastructure behind twitter: Efficiency and opti-
mization (2016), https://blog.twitter.com/engineering/en_us/topics/

infrastructure/2016/the-infrastructure-behind-twitter-efficiency-and-

optimization

22. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.H.,
Shenker, S., Stoica, I.: Mesos: A platform for fine-grained resource sharing in the
data center. In: NSDI. vol. 11, pp. 22–22 (2011)

23. Krishnan, S.: Discovery and consumption of analytics data at twit-
ter (2016), https://blog.twitter.com/engineering/en_us/topics/insights/

2016/discovery-and-consumption-of-analytics-data-at-twitter.html

24. Lamb, A., Fuller, M., Varadarajan, R., Tran, N., Vandiver, B., Doshi, L., Bear,
C.: The Vertica analytic database: C-store 7 years later. Proceedings of the VLDB
Endowment 5(12) (2012)

25. Lawrence, R.: Integration and virtualization of relational SQL and NoSQL systems
including MySQL and MongoDB. In: 2014 International Conference on Computa-
tional Science and Computational Intelligence. vol. 1, pp. 285–290. IEEE (2014)

26. Lawrence, R.: Faster querying for database integration and virtualization with
distributed semi-joins. In: 2017 International Conference on Computational Science
and Computational Intelligence (CSCI). pp. 1406–1410. IEEE (2017)

27. Li, Y., Luo, Z., Tang, C., Ghosh, M., Wu, H., Zhang, L., Lu, A., Kabra, R.,
Navadiya, N.K., Mishra, P., et al.: A performance evaluation of spark graphframes

https://blog.twitter.com/engineering/en_us/a/2015/hadoop-filesystem-at-twitter
https://blog.twitter.com/engineering/en_us/a/2015/hadoop-filesystem-at-twitter
https://blog.twitter.com/engineering/en_us/a/2015/graduating-apache-parquet.html
https://blog.twitter.com/engineering/en_us/a/2015/graduating-apache-parquet.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2016/the-infrastructure-behind-twitter-efficiency-and-optimization
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2016/the-infrastructure-behind-twitter-efficiency-and-optimization
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2016/the-infrastructure-behind-twitter-efficiency-and-optimization
https://blog.twitter.com/engineering/en_us/topics/insights/2016/discovery-and-consumption-of-analytics-data-at-twitter.html
https://blog.twitter.com/engineering/en_us/topics/insights/2016/discovery-and-consumption-of-analytics-data-at-twitter.html


Serving Hybrid-Cloud SQL Interactive Queries at Twitter 19

for fast and scalable graph analytics at Twitter. In: 2021 IEEE International Con-
ference on Big Data (Big Data). pp. 5959–5959. IEEE (2021)

28. Luo, Z., Niu, L., Korukanti, V., Agrawal, D., He, Y., Wang, B., Luo, H., Tang, C.,
Li, Y., Singh, A., Du, P., Baliga, G., Fu, M.: From batch processing to real time
analytics: Running presto at scale (in press). In: 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE (2022)

29. Mami, M.N., Graux, D., Scerri, S., Jabeen, H., Auer, S., Lehmann, J.: Uniform
access to multiform data lakes using semantic technologies. In: Proceedings of the
21st International Conference on Information Integration and Web-based Applica-
tions & Services. pp. 313–322 (2019)

30. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vas-
silakis, T.: Dremel: Interactive analysis of web-scale datasets. Proceedings of the
VLDB Endowment 3(1-2), 330–339 (2010)

31. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassi-
lakis, T., Ahmadi, H., Delorey, D., Min, S., et al.: Dremel: A decade of interactive
SQL analysis at web scale. Proceedings of the VLDB Endowment 13(12), 3461–
3472 (2020)

32. Mousa, A.H., Shiratuddin, N.: Data warehouse and data virtualization comparative
study. In: 2015 International Conference on Developments of E-Systems Engineer-
ing (DeSE). pp. 369–372. IEEE (2015)

33. Mucchetti, M.: BigQuery ML. In: BigQuery for Data Warehousing, pp. 419–468.
Springer (2020)

34. Rottinghuis, J.: Partly Cloudy: The start of a journey into the cloud (2019),
https://blog.twitter.com/engineering/en_us/topics/infrastructure/

2019/the-start-of-a-journey-into-the-cloud.html
35. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: Flexible,

scalable schedulers for large compute clusters. In: Proceedings of the 8th ACM
European Conference on Computer Systems. pp. 351–364 (2013)

36. Sethi, R., Traverso, M., Sundstrom, D., Phillips, D., Xie, W., Sun, Y., Yegitbasi,
N., Jin, H., Hwang, E., Shingte, N., et al.: Presto: SQL on everything. In: 2019
IEEE 35th International Conference on Data Engineering (ICDE). pp. 1802–1813.
IEEE (2019)

37. Tan, J., Ghanem, T., Perron, M., Yu, X., Stonebraker, M., DeWitt, D., Serafini, M.,
Aboulnaga, A., Kraska, T.: Choosing a cloud DBMS: Architectures and tradeoffs.
Proceedings of the VLDB Endowment 12(12), 2170–2182 (2019)

38. Tang, C., Yu, K., Veeraraghavan, K., Kaldor, J., Michelson, S., Kooburat, T.,
Anbudurai, A., Clark, M., Gogia, K., Cheng, L., et al.: Twine: A unified cluster
management system for shared infrastructure. In: 14th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 20). pp. 787–803 (2020)

39. Tang, C., Li, Y., Luo, Z., Ghosh, M., Wu, H., Zhang, L., Lu, A., Kabra, R.,
Navadiya, N.K., Mishra, P., et al.: Taming hybrid-cloud fast and scalable graph
analytics at Twitter. arXiv preprint arXiv:2204.11338 (2022)

40. Tang, C., Wang, B., Luo, Z., Wu, H., Dasan, S., Fu, M., Li, Y., Ghosh, M., Kabra,
R., Navadiya, N.K., et al.: Forecasting SQL query cost at Twitter. In: 2021 IEEE
International Conference on Cloud Engineering (IC2E). pp. 154–160. IEEE (2021)

41. Tang, C., Wang, B., Wu, H., Wang, Z., Li, Y., Channapattan, V., Luo, Z., Kabra,
R., Ghosh, M., Navadiya, N.K., et al.: Hybrid-cloud sql federation system at twit-
ter. In: European Conference on Software Architecture. Springer (2021)

42. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyck-
off, P., Murthy, R.: Hive: A warehousing solution over a map-reduce framework.
Proceedings of the VLDB Endowment 2(2), 1626–1629 (2009)

https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/the-start-of-a-journey-into-the-cloud.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/the-start-of-a-journey-into-the-cloud.html


20 C. Tang et al.

43. Tirmazi, M., Barker, A., Deng, N., Haque, M.E., Qin, Z.G., Hand, S., Harchol-
Balter, M., Wilkes, J.: Borg: the next generation. In: Proceedings of the Fifteenth
European Conference on Computer Systems. pp. 1–14 (2020)

44. Vathy-Fogarassy, Á., Hugyák, T.: Uniform data access platform for SQL and
NoSQL database systems. Information Systems 69, 93–105 (2017)

45. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S., et al.: Apache Hadoop Yarn: Yet an-
other resource negotiator. In: Proceedings of the 4th annual Symposium on Cloud
Computing. pp. 1–16 (2013)

46. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.:
Large-scale cluster management at Google with Borg. In: Proceedings of the Tenth
European Conference on Computer Systems. pp. 1–17 (2015)

47. VijayaRenu, L., Wang, Z., Rottinghuis, J.: Scaling event aggregation at Twitter
to handle billions of events per minute. In: 2020 IEEE Infrastructure Conference.
pp. 1–4. IEEE (2020)

48. Wei, C., Wu, B., Wang, S., Lou, R., Zhan, C., Li, F., Cai, Y.: Analyticdb-v: A
hybrid analytical engine towards query fusion for structured and unstructured
data. Proceedings of the VLDB Endowment 13(12), 3152–3165 (2020)

49. Wu, H., Qian, X., Crowell, H.P., Singh, T., Shulman, A., Bhimani, P., Maloo, A.,
Tang, C., Li, Y., Zhang, L., et al.: Migrate on-premises real-time data analytics
jobs into the cloud. In: 2021 IEEE 8th International Conference on Data Science
and Advanced Analytics (DSAA). pp. 1–2. IEEE (2021)

50. Wu, H., Qian, X., Shulman, A., Karanawat, K., Singh, T., Crowell, H.P., Bhimani,
P., Tang, C., Li, Y., Zhang, L., et al.: Move real-time data analytics to the cloud: A
case study on heron to dataflow migration. In: 2021 IEEE International Conference
on Big Data (Big Data). pp. 2064–2067. IEEE (2021)

51. Zhan, C., Su, M., Wei, C., Peng, X., Lin, L., Wang, S., Chen, Z., Li, F., Pan, Y.,
Zheng, F., et al.: Analyticdb: Real-time OLAP database system at Alibaba cloud.
Proceedings of the VLDB Endowment 12(12), 2059–2070 (2019)


	Serving Hybrid-Cloud SQL Interactive Queries at Twitter

