Skip to main content

Autonomous Wheeled Locomotion on Irregular Terrain with Tactile Sensing

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 530))

Included in the following conference series:

  • 1347 Accesses

Abstract

Adopting the concept of the tactile wheel, which considers the interaction between the wheel and the ground, this paper simulates reinforcement learning to show the usefulness of tactile sensing for autonomous wheeled robots on irregular terrain and to clarify the characteristics of the information to be acquired. A wheeled robot model with a wheel-on-leg structure is created and tested on two types of irregular terrain. The tactile information from each wheel is used as part of the reinforcement learning state. The average return and sample efficiency respectively increase by factors of 1.18 and 2.21 on uneven terrain. On fractal terrain, they increase by factors of 1.31 and 2.51 times, respectively, confirming the usefulness of tactile information. Tactile wheels using analog tactile information perform better in terms of adaptability to unknown terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oliveira, J., Farçoni, L., Pinto, A., Lang, R., Silva, I., Romero, R.: A review on locomotion systems for RoboCup rescue league robots. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 265–276. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1_22

    Chapter  Google Scholar 

  2. Bruzzone, L., Quaglia, G.: Review article: locomotion systems for ground mobile robots in unstructured environments. Mech. Sci. 3(2), 49–62 (2012)

    Article  Google Scholar 

  3. Lauria, M., Piguet, Y., Siegwart, R.: Octopus: an autonomous wheeled climbing robot. In: Proceedings of the Fifth International Conference on Climbing and Walking Robots (CLAWAR 2002), pp. 315–322 (2002)

    Google Scholar 

  4. Nagatani, K., Ikeda, A., Sato, K., Yoshida, K.: Accurate estimation of drawbar pull of wheeled mobile robots traversing sandy terrain using built-in force sensor array wheel. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2373–2378 (2009)

    Google Scholar 

  5. Mardani, A., Ebrahimi, S.: Simultaneous surface scanning and stability analysis of wheeled mobile robots using a new spatial sensitive shield sensor. Rob. Auton. Syst. 98, 1–14 (2017)

    Article  Google Scholar 

  6. Ebrahimi, S., Mardani, A.: A new resistive belt sensor for multipoint contact detection of robotic wheels. Iran. J. Sci. Technol. Trans. Mech. Eng. 43(1), 399–414 (2018). https://doi.org/10.1007/s40997-018-0166-9

    Article  Google Scholar 

  7. Marchetti, Y., Lightholder, J., Junkins, E., Cross, M., Mandrake, L., Fraeman, A.: Barefoot rover: a sensor-embedded rover wheel demonstrating in-situ engineering and science extractions using machine learning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6000–6006 (2020)

    Google Scholar 

  8. Chen, Y., Marchetti, Y., Gel, Y.R.: Deepening the sense of touch in planetary exploration with geometric and topological deep learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 17, pp. 15,278–15,285 (2021)

    Google Scholar 

  9. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033 (2012)

    Google Scholar 

  10. Wilcox, B.H., Jones, R.M.: The MUSES-CN nanorover mission and related technology. In: IEEE Aerospace Conference Proceedings (Cat. No.00TH8484), vol. 7, pp. 287–295 (2000)

    Google Scholar 

  11. Zhao, J., Han, T., Wang, S., Liu, C., Fang, J., Liu, S.: Design and research of all-terrain wheel-legged robot. Sensors 21(16), 5367 (2021)

    Article  Google Scholar 

  12. Haarnoja, T., et al.: Soft actor-critic algorithms and applications (2018). arXiv preprint arXiv:1812.05905

  13. Fujita, Y., Nagarajan, P., Kataoka, T., Ishikawa, T.: ChainerRL: a deep reinforcement learning library (2019). arXiv preprint arXiv:1912.03905

  14. Melnik, A., Lach, L., Plappert, M., Korthals, T., Haschke, R., Ritter, H.: Tactile sensing and deep reinforcement learning for in-hand manipulation tasks. In: IROS Workshop on Autonomous Object Manipulation (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 18H05466.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Tomioka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomioka, H., Ikeda, M., Or, K., Niiyama, R., Kuniyoshi, Y. (2023). Autonomous Wheeled Locomotion on Irregular Terrain with Tactile Sensing. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_13

Download citation

Publish with us

Policies and ethics