Skip to main content

Design Optimization of a Four-Bar Leg Linkage for a Legged-Wheeled Balancing Robot

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 530))

Included in the following conference series:

  • 1591 Accesses

Abstract

Balancing legged-wheeled robots have gained popularity in recent years due to their locomotive efficiency while still being able to conquer rough terrain and obstacles. Furthermore, as this type of robot maintains ground contact with its wheels for most of the time, passive gravity compensation mechanisms can greatly minimize power consumption. Various designs with different leg configurations have emerged, whereby a 1-DOF mechanism per leg already showed sufficient compliance to adapt to most outdoor terrain. We propose a design optimization procedure for a 1-DOF four-bar leg linkage to ensure minimum pitch angle correction of the robot’s base while varying the leg extension. Gravity compensation is further achieved through an optimized torsional spring. Finally, we evaluate the performance of the leg linkage and gravity compensation mechanism on real hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The inverted pendulum structure includes all the bodies except the wheels.

  2. 2.

    On an Intel i7-8809G processor.

  3. 3.

    Averaged over the up and down motion to remove hysteresis effects.

References

  1. Bjelonic, M., Klemm, V., Lee, J., Hutter, M.: A survey of wheeled-legged robots (2022)

    Google Scholar 

  2. Bjelonic, M., Bellicoso, C.D., de Viragh, Y., Sako, D., Tresoldi, F.D., Jenelten, F., Hutter, M.: Keep rollin’-whole-body motion control and planning for wheeled quadrupedal robots. IEEE Robot. Autom. Lett. 4(2), 2116–2123 (2019)

    Article  Google Scholar 

  3. Wang, S., et al.: Balance control of a novel wheel-legged robot: design and experiments. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 6782-6788. IEEE (2021)

    Google Scholar 

  4. Vollenweider, E., Bjelonic, M., Klemm, V., Rudin, N., Lee, J., Hutter, M.: Advanced skills through multiple adversarial motion priors in reinforcement learning. arXiv preprint. arXiv:2203.14912 (2022)

  5. Zambella, G.: Dynamic whole-body control of unstable wheeled humanoid robots. IEEE Robot. Automa. Lett. 4(4), 3489–3496 (2019)

    Article  Google Scholar 

  6. Boston Dynamics: Introducing Handle. https://youtu.be/-7xvqQeoA8c, YouTube (2017)

  7. Klemm, V., et al.: LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops. IEEE Robot. Autom. Lett. 5(2), 3745–3752 (2020)

    Article  Google Scholar 

  8. Klemm, V., et al.: A two-wheeled jumping robot. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7515-7521. IEEE (2019)

    Google Scholar 

  9. Chadwick, M., Kolvenbach, H., Dubois, F., Lau, H.F., Hutter, M.: Vitruvio: an open-source leg design optimization toolbox for walking robots. IEEE Robot. Autom. Lett. 5(4), 6318–6325 (2020)

    Article  Google Scholar 

  10. Boston Dynamics: Handle Robot Reimagined for Logistics. https://youtu.be/5iV_hB08Uns, YouTube (2019)

  11. Ulrich, N., Kumar, V.: Passive mechanical gravity compensation for robot manipulators. In: 1991 IEEE International Conference on Robotics and Automation, pp. 1536-1541. IEEE Computer Society, Los Alamitos (1991)

    Google Scholar 

  12. Ham, R.V., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)

    Article  Google Scholar 

  13. Arm, P., et al.: SpaceBok: a dynamic legged robot for space exploration. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6288-6294 (2019)

    Google Scholar 

  14. Mannhart, D., Dubois, F., Bodie, K., Klemm, V., Morra, A., Hutter, M.: CAMI-analysis, design and realization of a force-compliant variable cam system. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 850-856 (2020)

    Google Scholar 

  15. Hartenberg, R.S., Danavit, J.: Kinematic Synthesis of Linkages, pp. 295–297. McGraw-Hill Book Company, New York (1964)

    Google Scholar 

  16. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. Trans. J. Appl. Mech. (23), 215-221 (1955)

    Google Scholar 

  17. Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Math. Prog. Comput. 11(1), 1–36 (2018). https://doi.org/10.1007/s12532-018-0139-4

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Ciro Salzmann, Lionel Gulich, Alessandro Morra for their support in realizing the shown Ascento prototype, as well as all supporters of the Ascento project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Klemm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klemm, V., Mannhart, D., Siegwart, R. (2023). Design Optimization of a Four-Bar Leg Linkage for a Legged-Wheeled Balancing Robot. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_15

Download citation

Publish with us

Policies and ethics