Skip to main content

A Review of Current Approaches to Configuration Detection in Modular Legged Robots

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 530))

Included in the following conference series:

  • 1372 Accesses

Abstract

In this paper, we review monolithic and reconfigurable modular robotic systems, focusing on configuration detection and legged locomotion. The focus of the review lies on the realization of a robotic system consisting of autonomous robotic legs with integrated PC and power units and grants a specialized look at embodiment for such robots. We further dissect the challenges of disembodied modular legged systems and propose how they may be realized using configuration detection. This is necessary in case the configuration as well as the payload is unknown to the robot. Using the state of the art approaches, we propose a approach for the realization of a modular disembodied legged robot consisting of a list of methods focussing on individual issues in the realization of such autonomous legs. We close with an outlook on future challenges for such a system and what research fields will need to be exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the case of monolithic robots, we will speak of topology detection rather than configuration detection, since they are not reconfigurable.

  2. 2.

    Swarm robotics are also seen in heterogeneous MRS (Fig. 2). Because the leg modules are homogeneous, however, we do not include heterogeneous swarms in our review.

References

  1. Hurst, J.: Walk this way: to be useful around people, robots need to learn how to move like we do. IEEE Spectr. 56(3), 30–51 (2019)

    Article  Google Scholar 

  2. Siciliano, B., Khatib, O., Kröger, T.: Springer Handbook of Robotics, vol. 200. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5

    Book  MATH  Google Scholar 

  3. Buettner, T., Wilke, D., Roennau, A., Heppner, G. Dillmann, R.: A scalable, modular leg design for multi-legged stair climbing robots. In: International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR) (2018)

    Google Scholar 

  4. Buettner, T., Heppner, G., Roennau, A. Dillmann, R.: Nimble limbs-intelligent attachable legs to create walking robots from variously shaped objects. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 376–381. IEEE (2019)

    Google Scholar 

  5. Roennau, A.: Verhalten. In: T-INFO-101351 - Biologisch Motivierte Robotersysteme, p. 28 (2021)

    Google Scholar 

  6. Adolph, K.E., et al.: How do you learn to walk? thousands of steps and dozens of falls per day. Psychol. Sci. 23(11), 1387–1394 (2012)

    Article  Google Scholar 

  7. Liu, J., Zhang, X., Hao, G.: Survey on research and development of reconfigurable modular robots. Adv. Mech. Eng. 8(8), 1687814016659597 (2016)

    Google Scholar 

  8. Ahmadzadeh, H., Masehian, E., Asadpour, M.: Modular robotic systems: characteristics and applications. J. Intell. Robot. Syst. 81(3–4), 317–357 (2016)

    Article  Google Scholar 

  9. Koolen, T., et al.: Design of a momentum-based control framework and application to the humanoid robot atlas. Int. J. Humanoid Robot. 13(01), 1650007 (2016)

    Article  Google Scholar 

  10. Rönnau, A., Heppner, G., Nowicki, M., Dillmann, R.: Lauron v: a versatile six-legged walking robot with advanced maneuverability. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 82–87. IEEE (2014)

    Google Scholar 

  11. Kim, J., Alspach, A., Yamane, K.: Snapbot: a reconfigurable legged robot. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5861–5867. IEEE (2017)

    Google Scholar 

  12. Ozkan-Aydin, Y., Goldman, D.I.: Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks. Sci. Robot. 6(56), eabf1628 (2021)

    Article  Google Scholar 

  13. Biswal, P., Mohanty, P.K.: Development of quadruped walking robots: a review. Ain Shams Eng. J. 12(2), 2017–2031 (2021)

    Article  Google Scholar 

  14. Baca, J., Woosley, B., Dasgupta, P., Nelson, C.A.: Configuration discovery of modular self-reconfigurable robots: real-time, distributed, ir+ xbee communication method. Robot. Auton. Syst. 91, 284–298 (2017)

    Article  Google Scholar 

  15. Baca, J., Woosley, B., Dasgupta, P., Dutta, A., Nelson, C.: Coordination of modular robots by means of topology discovery and leader election: improvement of the locomotion case. In: Chong, N.-Y., Cho, Y.-J. (eds.) Distributed Autonomous Robotic Systems. STAR, vol. 112, pp. 447–458. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55879-8_31

    Chapter  Google Scholar 

  16. Nurmaini, S., Tutuko, B.: Intelligent robotics navigation system: problems, methods, and algorithm. Int. J. Electr. Comput. Eng. 7(6), 3711 (2017). (2088-8708)

    Google Scholar 

  17. Ohira, M., Chatterjee, R., Kamegawa, T., Matsuno, F. Development of three-legged modular robots and demonstration of collaborative task execution. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3895–3900. IEEE (2007)

    Google Scholar 

  18. Johnson, P.J., Bay, J.S.: Distributed control of simulated autonomous mobile robot collectives in payload transportation. Auton. Robot. 2(1), 43–63 (1995)

    Article  Google Scholar 

  19. Bongard, J.C., Lipson, H.: Automated damage diagnosis and recovery for remote robotics. In: 2004 Proceedings of the IEEE International Conference on Robotics and Automation. ICRA 2004, vol. 4, pp. 3545–3550. IEEE (2004)

    Google Scholar 

  20. Bongard, J.C., Lipson, H.: Automated robot function recovery after unanticipated failure or environmental change using a minimum of hardware trials. In: Proceedings 2004 NASA/DoD Conference on Evolvable Hardware, pp. 169–176. IEEE (2004)

    Google Scholar 

  21. Koos, S., Cully, A., Mouret, J.-B.: Fast damage recovery in robotics with the t-resilience algorithm. Int. J. Robot. Res. 32(14), 1700–1723 (2013)

    Article  Google Scholar 

  22. Mouret, J.-B., Chatzilygeroudis, K.: 20 years of reality gap: a few thoughts about simulators in evolutionary robotics. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, New York, NY, USA, pp. 1121-1124. Association for Computing Machinery (2017)

    Google Scholar 

  23. Mouret, J.-B., Koos, S., Doncieux, S.: Crossing the reality gap: a short introduction to the transferability approach (2013)

    Google Scholar 

  24. Bongard, J.: Action-selection and crossover strategies for self-modeling machines. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 198–205 (2007)

    Google Scholar 

  25. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)

    Article  Google Scholar 

  26. Gim, K.G., Kim, J.: Snapbot v2: a reconfigurable legged robot with a camera for self configuration recognition. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4026–4031. IEEE (2020)

    Google Scholar 

  27. Wang, M., Su, Y., Liu, H., Xu, Y.: Walkingbot: modular interactive legged robot with automated structure sensing and motion planning. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 307–312. IEEE (2020)

    Google Scholar 

  28. Jacob, D., Polani, D., Nehaniv, C.L.: Legs that can walk: embodiment-based modular reinforcement learning applied. In: 2005 International Symposium on Computational Intelligence in Robotics and Automation, pp. 365–372. IEEE (2005)

    Google Scholar 

  29. Støy, K., Shen, W.-M., Will, P.: How to make a self-reconfigurable robot run. Proc. First Int. Joint conf. Auton. Agents Multiagent Syst. part 2, 813–820 (2002)

    Google Scholar 

  30. Tuci, E., Alkilabi, M.H., Akanyeti, O.: Cooperative object transport in multi-robot systems: a review of the state-of-the-art. Front. Robot. AI 5, 59 (2018)

    Article  Google Scholar 

  31. Jeong, D., Lee, K.: Distributed communication and localization algorithms for homogeneous robotic swarm. In: Chong, N.-Y., Cho, Y.-J. (eds.) Distributed Autonomous Robotic Systems. STAR, vol. 112, pp. 405–418. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55879-8_28

    Chapter  Google Scholar 

  32. Clemens, J., Reineking, T., Kluth, T.: An evidential approach to slam, path planning, and active exploration. Int. J. Approximate Reasoning 73, 1–26 (2016)

    Article  MathSciNet  Google Scholar 

  33. Alrajeh, N.A., Bashir, M., Shams, B.: Localization techniques in wireless sensor networks. Int. J. Distrib. Sens. Netw. 9(6), 304628 (2013)

    Article  Google Scholar 

  34. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man, and Cybernetics. Part C (Appl. Rev.) 37(6), 1067–1080 (2007)

    Article  Google Scholar 

  35. Jaulin, L.: Mobile Robotics, pp. 121–126 (2019)

    Google Scholar 

  36. Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci. 13(1), 15–21 (1990)

    Article  Google Scholar 

  37. Quigley, M., et al.: Ros: an open-source robot operating system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan (2009)

    Google Scholar 

  38. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W.: Robot operating system 2: design, architecture, and uses in the wild. Sci. Robot. 7(66), eabm6074 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothee Buettner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buettner, T., Schwertfeger, O., Roennau, A., Dillmann, R. (2023). A Review of Current Approaches to Configuration Detection in Modular Legged Robots. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_18

Download citation

Publish with us

Policies and ethics