Skip to main content

Adaptation of a Decentralized Controller to Curve Walking in a Hexapod Robot

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 530))

Included in the following conference series:

Abstract

Curve walking is an important skill for multi-legged robot locomotion as it increases a robots’ maneuverability. We investigate whether a decentralized system can explain even complex walking behaviors like curve walking. Based on an analysis of the curve walking capabilities of the decentralized control architecture Walknet, we propose a couple of simple but effective modifications with a main focus on the coordination between leg controllers: controlling the step length, shifting the AEP (transition point from swing to stance), and decreasing the step length for the legs on the inside of the curve. In simulation, the modified architecture demonstrated a significant improvement in the stability of the curve walking performance for tight curves and even allows a smooth transition to extremely tight curves and turning on the spot. Furthermore, the system is tested on a real robot and showed good qualitative results and robust curve walking behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Videos can be found in the publicly accessible git: https://gitlab.ub.uni-bielefeld.de/jsimmering/walknet-curve-walking-supporting-videos.git.

References

  1. Buschmann, T., Ewald, A., von Twickel, A., Büschges, A.: Controlling legs for locomotion–insights from robotics and neurobiology. Bioinspiration Biomimetics 10(4), 041001 (2015). https://doi.org/10.1088/1748-3190/10/4/041001

    Article  Google Scholar 

  2. Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci. 13(1), 15–21 (1990)

    Article  Google Scholar 

  3. Cruse, H., et al.: Walking: a complex behavior controlled by simple networks. Adapt. Behav. 3(4), 385–418 (1995). https://doi.org/10.1177/105971239500300403

    Article  Google Scholar 

  4. Cruse, H., Kindermann, T., Schumm, M., Dean, J., Schmitz, J.: Walknet—a biologically inspired network to control six-legged walking. Neural Netw. 11(7), 1435–1447 (1998). https://doi.org/10.1016/S0893-6080(98)00067-7

    Article  Google Scholar 

  5. Dürr, V., Ebeling, W.: The behavioural transition from straight to curve walking: Kinetics of leg movement parameters and the initiation of turning. J. Exp. Biol. 208(12), 2237–2252 (2005). https://doi.org/10.1242/jeb.01637

    Article  Google Scholar 

  6. Dürr, V., Schmitz, J., Cruse, H.: Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Struct. Dev. 33(3), 237–250 (2004). https://doi.org/10.1016/j.asd.2004.05.004

    Article  Google Scholar 

  7. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  8. Jander, J.P.: Untersuchungen zum Mechanismus und zur zentralnervösen Steuerung des Kurvenlaufs bei Stabheuschrecken (Carausius morosus). Ph.D. thesis, Universität Köln (1982)

    Google Scholar 

  9. Kindermann, T.: Behavior and adaptability of a six-legged walking system with highly distributed control. Adapt. Behav. 9(1), 16–41 (2001)

    Article  MathSciNet  Google Scholar 

  10. Neftci, E.O., Averbeck, B.B.: Reinforcement learning in artificial and biological systems. Nature Mach. Intell. 1(3), 133–143 (2019)

    Article  Google Scholar 

  11. Paskarbeit, J.: Consider the robot-abstraction of bioinspired leg coordination and its application to a hexapod robot under consideration of technical constraints. Ph.D. thesis, Universität Bielefeld (2017)

    Google Scholar 

  12. Rosano, H., Webb, B.: A dynamic model of thoracic differentiation for the control of turning in the stick insect. Biol. Cybern. 97(3), 229–246 (2007). https://doi.org/10.1007/s00422-007-0170-4

    Article  MATH  Google Scholar 

  13. Schilling, M., Cruse, H.: ReaCog, a minimal cognitive controller based on recruitment of reactive systems. Front. Neurorobotics 11, 3 (2017)

    Article  Google Scholar 

  14. Schilling, M., Hoinville, T., Schmitz, J., Cruse, H.: Walknet, a bio-inspired controller for hexapod walking. Biol. Cybern. 107(4), 397–419 (2013)

    Article  MathSciNet  Google Scholar 

  15. Schilling, M., Konen, K., Ohl, F.W., Korthals, T.: Decentralized deep reinforcement learning for a distributed and adaptive locomotion controller of a hexapod robot. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5335–5342. IEEE

    Google Scholar 

  16. Schilling, M., Melnik, A.: An approach to hierarchical deep reinforcement learning for a decentralized walking control architecture. In: Samsonovich, A.V. (ed.) BICA 2018. AISC, vol. 848, pp. 272–282. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99316-4_36

    Chapter  Google Scholar 

  17. Schilling, M., Melnik, A., Ohl, F.W., Ritter, H.J., Hammer, B.: Decentralized control and local information for robust and adaptive decentralized deep reinforcement learning. Neural Netw. 144, 699–725 (2021)

    Article  Google Scholar 

  18. Schilling, M., et al.: A hexapod walker using a heterarchical architecture for action selection. Front. Comput. Neurosci. 7, 126 (2013)

    Article  Google Scholar 

  19. Schilling, M., Paskarbeit, J., Ritter, H., Schneider, A., Cruse, H.: From adaptive locomotion to predictive action selection-Cognitive control for a six-legged walker. IEEE Trans. Rob. 38(2), 666–682 (2022)

    Article  Google Scholar 

  20. Schilling, M., Paskarbeit, J., Schmitz, J., Schneider, A., Cruse, H.: Grounding an internal body model of a hexapod walker - control of curve walking in a biological inspired robot. In: Proceeding of International Conference on Intelligence Robots and Systems (2012)

    Google Scholar 

  21. Simmering, J.: Adapting the decentralized walknet architecture for improved curve walking in a six-legged phantomx. Master’s thesis, Bielefeld University (2021)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the research training group “Dataninja” (Trustworthy AI for Seamless Problem Solving: Next Generation Intelligence Joins Robust Data Analysis) funded by the German federal state of North Rhine-Westphalia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Schilling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simmering, J., Hermes, L., Schneider, A., Schilling, M. (2023). Adaptation of a Decentralized Controller to Curve Walking in a Hexapod Robot. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_26

Download citation

Publish with us

Policies and ethics