Skip to main content

CPG-Based Gait Generator for a Quadruped Robot with Sidewalk and Turning Operations

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Abstract

This article describes the quadruped robot gait generator algorithm based on the central pattern generator (CPG). The proposed architecture uses CPG as a phase signal generator for each leg, and a mapping function that builds the desired trajectory for the robot feet. The algorithm is able to change the gait type smoothly in real time, and also do the same with movement direction, frequency, height and length of the stride. In order to test the performance of the algorithm, experiments were carried out both in the simulation and on the real robot. The results show the efficiency of the algorithm and its ease of implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://youtu.be/bFAk3QXRYn4.

References

  1. Lee, T.T., Liao, C.M., Chen, T.K.: On the stability properties of hexapod tripod gait. IEEE J. Robotics Autom. 4, 427–434 (1988)

    Article  Google Scholar 

  2. Vukobratovic, M., Borovac, B.: Zero-moment point - thirty-five years of its life. Int. J. Humanoid Rob. 01(01), 157–173 (2004)

    Article  Google Scholar 

  3. Li, J., Wang, J., Yang, S.X., Zhou, K., Tang, H.: Gait planning and stability control of a quadruped robot. Comput. Intell. Neurosci. 2016, 9853070 (2016)

    Google Scholar 

  4. Xin, G., Deng, H., Zhong, G., Wang, H.: Gait and trajectory rolling planning for hexapod robot in complex environment. In: Mechanism and Machine Science, pp. 23–33. Springer Singapore, Singapore (2017)

    Google Scholar 

  5. Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.: Fast, robust quadruped locomotion over challenging terrain. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2665–2670 (2010)

    Google Scholar 

  6. Delcomyn, F.: Neural basis of rhythmic behavior in animals. Science 210(4469), 492–498 (1980)

    Article  Google Scholar 

  7. Grillner, S., Zangger, P.: On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34(2), 241–261 (1979)

    Article  Google Scholar 

  8. Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. The Int. J. Roboti. Res. 22(3–4), 187–202 (2003)

    Article  Google Scholar 

  9. Grillner, S., Wallen, P., Brodin, L., Lansner, A.: Neuronal network generating locomotor behavior in lamprey: Circuitry, transmitters, membrane properties, and simulation. Annu. Rev. Neurosci. 14(1), 169–199 (1991)

    Article  Google Scholar 

  10. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  11. Conradt, J., Varshavskaya, P.: Distributed central pattern generator control for a serpentine robot. In: ICANN 2003 (2003)

    Google Scholar 

  12. Liu, C., Chen, Y., Zhang, J., Chen, Q.: CPG driven locomotion control of quadruped robot. In: Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, SMC’09, p. 2368–2373. IEEE Press (2009)

    Google Scholar 

  13. Righetti, L., Ijspeert, A.J.: Pattern generators with sensory feedback for the control of quadruped locomotion. In: 2008 IEEE International Conference on Robotics and Automation, pp. 819–824 (2008)

    Google Scholar 

  14. Santos, C.P., Matos, V.: Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach. Robot. Auton. Syst. 59(9), 620–634 (2011)

    Article  Google Scholar 

  15. Sutherland, I.E., Ullner, M.: Footprints in the asphalt. The Int. J. Roboti. Res. 3, 29–36 (1984)

    Article  Google Scholar 

  16. Cavagna, G.A., Heglund, N.C., Taylor, C.R.: Walking, running and galloping: mechanical similarities between different animals (1976)

    Google Scholar 

  17. Raibert, M.H., Chepponis, M., Brown, H.B.: Running on four legs as though they were one. IEEE J. Robotics Autom. 2, 70–82 (1986)

    Article  Google Scholar 

  18. Poulakakis, I., Papadopoulos, E., Buehler, M.: On the stability of the passive dynamics of quadrupedal running with a bounding gait. The Int. J. Roboti. Res. 25, 669–687 (2006)

    Article  Google Scholar 

  19. Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: Bigdog, the rough-terrain quadruped robot. In: 17th IFAC World Congress 41(2), 10822–10825 (2008)

    Google Scholar 

  20. De, A., Koditschek, D.E.: Vertical hopper compositions for preflexive and feedback-stabilized quadrupedal bounding, pacing, pronking, and trotting. The Int. J. Roboti. Res. 37(7), 743–778 (2018)

    Article  Google Scholar 

  21. Havoutis Ioannis, S.C.C.D.: Virtual model control for quadrupedal trunk stabilization. Dynamic Walking (2013)

    Google Scholar 

  22. Hutter, M., Gehring, C., Hopflinger, M.A., Blosch, M., Siegwart, R.: Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped. IEEE Trans. Rob. 30(6), 1427–1440 (2014)

    Article  Google Scholar 

  23. Hyun, D.J., Seok, S., Lee, J., Kim, S.: High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah. The Int. J. Roboti. Res. 33(11), 1417–1445 (2014)

    Article  Google Scholar 

  24. Park, H.W., Wensing, P.M., Kim, S.: High-speed bounding with the MIT Cheetah 2: Control design and experiments. The Int. J. Roboti. Res. 36(2), 167–192 (2017)

    Article  Google Scholar 

  25. Bledt, G., Powell, M.J., Katz, B., Di Carlo, J., Wensing, P.M., Kim, S.: MIT Cheetah 3: design and control of a robust, dynamic quadruped robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2245–2252 (2018)

    Google Scholar 

  26. Di Carlo, J., Wensing, P.M., Katz, B., Bledt, G., Kim, S.: Dynamic locomotion in the MIT Cheetah 3 through convex model-predictive control. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9 (2018)

    Google Scholar 

  27. Katz, B., Carlo, J.D., Kim, S.: Mini Cheetah: a platform for pushing the limits of dynamic quadruped control. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6295–6301 (2019)

    Google Scholar 

  28. Sleiman, J.P., Farshidian, F., Minniti, M.V., Hutter, M.: A unified mpc framework for whole-body dynamic locomotion and manipulation. IEEE Roboti. Auto. Lett. 6(3), 4688–4695 (2021)

    Article  Google Scholar 

  29. Villarreal, O., Barasuol, V., Wensing, P.M., Caldwell, D.G., Semini, C.: Mpc-based controller with terrain insight for dynamic legged locomotion. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 2436–2442 (2020)

    Google Scholar 

  30. Ha, S., Xu, P., Tan, Z., Levine, S., Tan, J.: Learning to walk in the real world with minimal human effort (2020)

    Google Scholar 

  31. Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., Levine, S.: Learning to walk via deep reinforcement learning (2018)

    Google Scholar 

  32. Kumar, A., Fu, Z., Pathak, D., Malik, J.: RMA: Rapid motor adaptation for legged robots (2021)

    Google Scholar 

  33. Yang, Y., Caluwaerts, K., Iscen, A., Zhang, T., Tan, J., Sindhwani, V.: Data efficient reinforcement learning for legged robots (2019)

    Google Scholar 

  34. Haarnoja, T., et al.: Soft actor-critic algorithms and applications (2018)

    Google Scholar 

  35. Hwangbo, J., et al.: Learning agile and dynamic motor skills for legged robots. Science Robotics 4(26) (2019)

    Google Scholar 

  36. Rudin, N., Hoeller, D., Reist, P., Hutter, M.: Learning to walk in minutes using massively parallel deep reinforcement learning (2021)

    Google Scholar 

  37. Iscen, A., et al.: Policies modulating trajectory generators (2019)

    Google Scholar 

  38. Tan, J., et al.: Sim-to-real: Learning agile locomotion for quadruped robots (2018)

    Google Scholar 

  39. Lee, J.H., Park, J.H.: Turning control for quadruped robots in trotting on irregular terrain. In: Proceedings of the 18th International Conference on Circuits Advances in Robotics, Mechatronics and Circuits, pp. 303–308 (2014)

    Google Scholar 

  40. Wang, M., Tang, Z., Chen, B., Zhang, J.: Locomotion control for quadruped robot based on central pattern generators. In: 2016 35th Chinese Control Conference (CCC), pp. 6335–6339 (2016)

    Google Scholar 

  41. Liu, C., Chen, Q., Wang, D.: CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 41(3), 867–880 (2011)

    Google Scholar 

  42. Yu, J., Tan, M., Chen, J., Zhang, J.: A survey on CPG-inspired control models and system implementation. IEEE Trans. Neural Netw. Learn. Sys. 25(3), 441–456 (2014). https://doi.org/10.1109/TNNLS.2013.2280596

    Article  Google Scholar 

  43. Craig, J.J.: Introduction to robotics: mechanics and control. Pearson Educacion (2005)

    Google Scholar 

  44. Danilov, V., Diane, S., Gonchareko, V., Artamonov, A.: Algorithms for intelligent control of multi-link walking robots with self-learning capabilities. In: 2020 22th International Conference on Digital Signal Processing and its Applications (DSPA), pp. 1–5 (2020)

    Google Scholar 

  45. Danilov, V., Goncharenko, V.: Development and implementation of a six-legged walking robot prototype. In: 2020 13th International Conference “Management of large-scale system development” (MLSD), pp. 1–5 (2020)

    Google Scholar 

  46. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games, robotics and machine learning, http://pybullet.org (2016–2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Danilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Danilov, V., Diane, S. (2023). CPG-Based Gait Generator for a Quadruped Robot with Sidewalk and Turning Operations. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_27

Download citation

Publish with us

Policies and ethics