Skip to main content

Power to the Springs: Passive Elements are Sufficient to Drive Push-Off in Human Walking

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 530))

Included in the following conference series:

Abstract

For the impulsive ankle push-off (APO) observed in human walking two muscle-tendon-units (MTUs) spanning the ankle joint play an important role: Gastrocnemius (GAS) and Soleus (SOL). GAS and SOL load the Achilles tendon to store elastic energy during stance followed by a rapid energy release during APO. We use a neuromuscular simulation (NMS) and a bipedal robot to investigate the role of GAS and SOL on the APO. We optimize the simulation for a robust gait and then sequentially replace the MTUs of (1) GAS, (2) SOL and (3) GAS and SOL by linear springs. To validate the simulation, we implement NMS-3 on a bipedal robot. Simulation and robot walk steady for all trials showing an impulsive APO. Our results imply that the elastic MTU properties shape the impulsive APO. For prosthesis or robot design that is, no complex ankle actuation is needed to obtain an impulsive APO, if more mechanical intelligence is incorporated in the design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.mathworks.com/help/simulink/gui/solver.html.

  2. 2.

    https://www.mathworks.com/help/gads/ga.html.

References

  1. Sygulla, F., Rixen, D.: A force-control scheme for biped robots to walk over uneven terrain including partial footholds. Int. J. Adv. Rob. Syst. 17, 172988141989747 (2020). https://doi.org/10.1177/1729881419897472

    Article  Google Scholar 

  2. Lechler, K., et al.: Motorized biomechatronic upper and lower limb prostheses-clinically relevant outcomes. PM &R 10, S207–S219 (2018). https://doi.org/10.1016/j.pmrj.2018.06.015

    Article  Google Scholar 

  3. Cardona, M., Solanki, V.K., García Cena, C.E.: Exoskeleton Robots for Rehabilitation and Healthcare Devices. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4732-4

    Book  Google Scholar 

  4. Perry, J., Burnfield, J.M., Cabico, L.M.: Gait Analysis: Normal and Pathological Function. SLACK (2010). ISBN 9781556427664

    Google Scholar 

  5. Meinders, M., Gitter, A., Czerniecki, J.M.: The role of ankle plantar flexor muscle work during walking. Scand. J. Rehabil. Med. 30, 39–46 (1998). https://doi.org/10.1080/003655098444309

    Article  Google Scholar 

  6. Lipfert, S.W., Günther, M., Renjewski, D., Seyfarth, A.: Impulsive ankle push-off powers leg swing in human walking. J. Exp. Biol. 217, 1218–1228 (2014). https://doi.org/10.1242/jeb.097345

    Article  Google Scholar 

  7. McNeill, A.R., Bennet-Clark, H.C.: Storage of elastic strain energy in muscle and other tissues. Nature 265, 114–117 (1977). https://doi.org/10.1038/265114a0

    Article  Google Scholar 

  8. Alexander, R.M.: Energy-saving mechanisms in walking and running. J. Exp. Biol. 160, 55–69 (1991). https://doi.org/10.1242/jeb.160.1.55

    Article  Google Scholar 

  9. Alexander, M.R.: A model of bipedal locomotion on compliant legs (1992)

    Google Scholar 

  10. Hof, A.L., Geelen, B.A., van den Berg, J.: Calf muscle moment, work and efficiency in level walking; role of series elasticity. J. Biomech. 16, 523–537 (1983). https://doi.org/10.1016/0021-9290(83)90067-2

    Article  Google Scholar 

  11. Wilson, A.M., Watson, J.C., Lichtwark, G.A.: A catapult action for rapid limb protraction. Nature 421, 35–36 (2003). https://doi.org/10.1038/421035a

    Article  Google Scholar 

  12. Gronenberg, W.: Fast actions in small animals: springs and click mechanisms. J. Comparat. Physiol. A 178, 727–734 (1996). https://doi.org/10.1007/bf00225821

    Article  Google Scholar 

  13. Bennet-Clark, H.C.: The energetics of the jump of the locust schistocerca gregaria. J. Exp. Biol. 63, 53–83 (1975). https://doi.org/10.1242/jeb.63.1.53

    Article  Google Scholar 

  14. Nishikawa, K.C.: Neuromuscular control of prey capture in frogs. Philos. Trans. Roy. Soc. London Ser. B Biol. Sci. 354, 941–954 (1999). https://doi.org/10.1098/rstb.1999.0445

    Article  Google Scholar 

  15. Cronin, N.J., Prilutsky, B.I., Lichtwark, G.A., Maas, H.: Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans? J. Biomech. 46, 1383–1386 (2013). https://doi.org/10.1016/j.jbiomech.2013.02.023

    Article  Google Scholar 

  16. Ishikawa, M., Komi, P.V., Grey, M.J., Lepola, V., Bruggemann, G.-P.: Muscletendon interaction and elastic energy usage in human walking. J. Appl. Physiol. (Bethesda Md.: 1985) 99, 603–608 (2005). https://doi.org/10.1152/japplphysiol.00189.2005

    Article  Google Scholar 

  17. Geyer, H., Herr, H.: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 18, 263–273 (2010). https://doi.org/10.1109/TNSRE.2010.2047592

    Article  Google Scholar 

  18. Geyer, H., Seyfarth, A.: Neuromuscular control models of human locomotion. In: Goswami, A., Vadakkepat, P. (eds.) Humanoid Robotics: A Reference, pp. 979–1007. Springer, Dordrecht (2019). https://doi.org/10.1007/978-94-007-6046-2_45. ISBN 978-94-007-6046-2

  19. Veerkamp, K., et al.: Evaluating cost function criteria in predicting healthy gait. J. Biomech. 123, 110530 (2021). https://doi.org/10.1016/j.jbiomech.2021.110530

    Article  Google Scholar 

  20. Falisse, A., et al.: Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies. J. R. Soc. Interface 16, 20190402 (2019). https://doi.org/10.1098/rsif.2019.0402

    Article  Google Scholar 

  21. Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14, 793–801 (1981). https://doi.org/10.1016/0021-9290(81)90035-X

    Article  Google Scholar 

  22. Umberger, B.R., Gerritsen, K.G.M., Martin, P.E.: A model of human muscle energy expenditure. Comput. Methods Biomech. Biomed. Eng. 6, 99–111 (2003). https://doi.org/10.1080/1025584031000091678

    Article  Google Scholar 

  23. Kiss, B., et al.: Investigation on a bipedal robot: why do humans need both Soleus and Gastrocnemius muscles for ankle push-off during walking? 3 March 2022

    Google Scholar 

  24. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008). https://doi.org/10.1016/j.neunet.2008.03.014

    Article  Google Scholar 

  25. Lichtwark, G.A., Bougoulias, K., Wilson, A.M.: Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J. Biomech. 40, 157–164 (2007). https://doi.org/10.1016/j.jbiomech.2005.10.035

    Article  Google Scholar 

  26. Umberger, B.R.: Stance and swing phase costs in human walking. J. R. Soc. Interface 7, 1329–1340 (2010). https://doi.org/10.1098/rsif.2010.0084

    Article  Google Scholar 

  27. Zelik, K.E., Huang, T.-W.P., Adamczyk, P.G., Kuo, A.D.: The role of series ankle elasticity in bipedal walking. J. Theor. Biol. 346, 75–85 (2014). https://doi.org/10.1016/j.jtbi.2013.12.014

    Article  MATH  Google Scholar 

  28. Sawicki, G.S., Lewis, C.L., Ferris, D.P.: It pays to have a spring in your step. Exerc. Sport Sci. Rev. 37, 130–138 (2009). https://doi.org/10.1097/JES.0b013e31819c2df6

    Article  Google Scholar 

  29. Yamaguchi, G.T., Sawa, A.G.U., Moran, D.W., Fessler, M.J., Winters, J.M.: A survey of human musculotendon actuator parameters (1990)

    Google Scholar 

  30. Collins, S.H., Wiggin, M.B., Sawicki, G.S.: Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 522, 212–215 (2015). https://doi.org/10.1038/nature14288

    Article  Google Scholar 

  31. Schumacher, C., Sharba, M., Seyfarth, A., Rode, C.: Biarticular muscles in light of template models, experiments and robotics: a review. J. Roy. Soc. Interface 17, 20180413 (2020). https://doi.org/10.1098/rsif.2018.0413

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Emre Cemal Gonen and An Mo for their help with the robot data. The project is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 449427815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Buchmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buchmann, A., Kiss, B., Badri-Spröwitz, A., Renjewski, D. (2023). Power to the Springs: Passive Elements are Sufficient to Drive Push-Off in Human Walking. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_5

Download citation

Publish with us

Policies and ethics