Skip to main content

Wearable Lower Limb Neuroprosthesis: System Architecture and Control Tuning

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Abstract

The use of functional electrical stimulation (FES) through neuroprosthesis is becoming a promising solution in lower limb neurorehabilitation. However, the wearability constraints and time-consuming tuning of stimulation parameters still limit the daily use of neuroprostheses. This work proposes two major contributions, namely: (i) a conceptual design and technical architecture of a fully wearable lower limb neuroprosthesis; and (ii) a Matlab-OpenSim framework that enables fast subject-and muscle-specific tuning of FES controllers based on OpenSim musculoskeletal models. The validation procedures for this study were divided into three phases: (i) Verification of the system architecture real-time requirements; (ii) evaluation of the reliability of the MATLAB-OpenSim framework for tuning PID controller; and (iii) its subsequent use in the neuroprosthesis control with a healthy subject. The obtained results demonstrated that the neuroprosthesis system was able to meet the real-time requirements, with control and data acquisition call periods below 10 ms. Further findings indicated reliable and stable behavior of the simulation-tuned PID controller with an overshoot of 9.82% and a rise time of 0.063 s. The trajectory tracking control results with the neuroprosthesis corroborated the robustness of the tuned PID controller in tracking the desired ankle trajectory (RMSE = 17.23 ± 2.97º and time delay = 0.21 ± 0.070 s).

This work has been supported by the Fundação para a Ciência e Tecnologia (FCT) through the Reference Scholarship under Grant SFRH/BD/147878/2019, the Stimulus of Scientific Employment under Grant 2020.03393.CEECIND, and in part by the FEDER Funds through the Programa Operacional Regional do Norte and national funds from FCT with the SmartOs project under Grant NORTE-01-0145-FEDER-030386. It is also supported under the national support to R & D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. H. Organization, “WHO | International perspectives on spinal cord injury,” WHO (2013). https://www.who.int/disabilities/policies/spinal_cord_injury/en/. Accessed 22 Apr 2020

  2. Marquez-Chin, C., Bolivar-Tellería, I., Popovic, M.R.: Brain–computer interfaces for neurorehabilitation: enhancing functional electrical stimulation, 2nd edn. Elsevier BV. Amsterdam

    Google Scholar 

  3. Moreno, J.C., Figueiredo, J., Pons, J. L.: Exoskeletons for lower-limb rehabilitation. In: Rehabilitation Robotics: Technology and Application, London, United Kingdom. Elsevier, pp. 89−100 (2018)

    Google Scholar 

  4. Moreno, J.C., Mohammed, S., Sharma, N., Del-Ama, A.J.: Hybrid wearable robotic exoskeletons for human walking. INC (2019)

    Google Scholar 

  5. Molazadeh, V., Zhang, Q., Bao, X., Dicianno, B.E., Sharma, N.: Shared control of a powered exoskeleton and functional electrical stimulation using iterative learning. Front. Robot. AI 8(11), 1–13 (2021). https://doi.org/10.3389/frobt.2021.711388

    Article  Google Scholar 

  6. Shah, M., Peterson, C., Yilmaz, E., Halalmeh, D.R., Moisi, M.: Current advancements in the management of spinal cord injury: a comprehensive review of literature. Surg. Neurol. Int. 10(174), 1–4 (2019). https://doi.org/10.25259/SNI

    Article  Google Scholar 

  7. Seel, T., Laidig, D., Valtin, M., Werner, C., Raisch, J., Schauer, T.: Feedback control of foot eversion in the adaptive peroneal stimulator. In: 22nd Mediterranean Conference on Control and Automation, pp. 1482–1487 (2014). https://doi.org/10.1109/MED.2014.6961585

  8. Ferrarin, M., Palazzo, F., Riener, R., Quintern, J.: Model-based control of FES-induced single joint movements. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 245–257 (2001). https://doi.org/10.1109/7333.948452

    Article  Google Scholar 

  9. Resquín, F., Pons, J.L., Brunetti, F., Ibáñez, J., Gonzalez-Vargas, J.: Feedback error learning controller for functional electrical stimulation assistance in a hybrid robotic system for reaching rehabilitation. Eur. J. Transl. Myol. 26(3), 255–261 (2016). https://doi.org/10.4081/ejtm.2016.6164

    Article  Google Scholar 

  10. Müller, P., Del Ama, A.J., Moreno, J.C., Schauer, T.: Adaptive multichannel FES neuroprosthesis with learning control and automatic gait assessment. J. Neuroeng. Rehabil. 17(1), 1–20 (2020). https://doi.org/10.1186/s12984-020-0640-7

    Article  Google Scholar 

  11. Kim, H., Park, G., Shin, J.H., You, J.H.: Neuroplastic effects of end-effector robotic gait training for hemiparetic stroke: a randomised controlled trial. Sci. Rep. 10(1), 1–9 (2020). https://doi.org/10.1038/s41598-020-69367-3

    Article  Google Scholar 

  12. Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. J. Neuroeng. Rehabil. (2006). https://doi.org/10.1186/1743-0003-3-25

    Article  Google Scholar 

  13. Cardoso, A.C., et al.: A comparative study on control strategies for FES cycling using a detailed musculoskeletal model. IFAC-PapersOnLine 49(32), 204–209 (2016). https://doi.org/10.1016/j.ifacol.2016.12.215

    Article  MathSciNet  Google Scholar 

  14. Figueiredo, J., Carvalho, S.P., Vilas-Boas, J.P., Gonçalves, L.M., Moreno, J.C., Santos, C.P.: Wearable inertial sensor system towards daily human kinematic gait analysis: benchmarking analysis to MVN BIOMECH. Sensors (Switzerland) 20(8), 2185 (2020). https://doi.org/10.3390/s20082185

    Article  Google Scholar 

  15. Müller, P., et al.: Adaptive multichannel FES neuroprosthesis with learning control and automatic gait assessment. J. Neuroeng. Rehabil. 17(1), 1–20 (2020). https://doi.org/10.1186/s12984-020-0640-7

    Article  Google Scholar 

  16. Tucker, M.R., et al.: Control strategies for active lower extremity prosthetics and orthotics: a review. J. Neuro Eng. Rehabil. 12(1), 1 (2015). https://doi.org/10.1186/1743-0003-12-1

    Article  Google Scholar 

  17. Bouri, M., Selfslagh, A., Campos, D., Yonamine, S., Donati, A.R.C., Shokur, S.: Closed-loop functional electrical stimulation for gait training for patients with paraplegia. In: 2018 IEEE International Conference on Robotics and Biomimetics, ROBIO, pp. 1489–1495 (2018). https://doi.org/10.1109/ROBIO.2018.8665270

  18. Seth, A., et al.: OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 14(7), e1006223 (2018). https://doi.org/10.1371/JOURNAL.PCBI.1006223

    Article  Google Scholar 

  19. Koopman, B., van Asseldonk, E.H.F., Van der Kooij, H.: Speed-dependent reference joint trajectory generation for robotic gait support. J. Biomech. 47(6), 1447–1458 (2014). https://doi.org/10.1016/j.jbiomech.2014.01.037

    Article  Google Scholar 

  20. Cavanagh, P.R., Komi, P.V.: Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 42(3), 159–163 (1979). https://doi.org/10.1007/BF00431022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Figueiredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carvalho, S.P., Figueiredo, J., Santos, C.P. (2023). Wearable Lower Limb Neuroprosthesis: System Architecture and Control Tuning. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_52

Download citation

Publish with us

Policies and ethics