Skip to main content

The Alternation Hierarchy of the \(\mu \)-calculus over Weakly Transitive Frames

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13468))

Abstract

It is known that the \(\mu \)-calculus collapses to its alternation-free fragment over transitive frames and to modal logic over equivalence relations. We adapt a proof by D’Agostino and Lenzi to show that the \(\mu \)-calculus collapses to its alternation-free fragment over weakly transitive frames. As a consequence, we show that the \(\mu \)-calculus with derivative topological semantics collapses to its alternation-free fragment. We also study the collapse over frames of \(\mathsf {S4.2}\), \(\mathsf {S4.3}\), \(\mathsf {S4.3.2}\), \(\mathsf {S4.4}\) and \(\textsf{KD45}\), logics important for Epistemic Logic. At last, we use the \(\mu \)-calculus to define degrees of ignorance on Epistemic Logic and study the implications of \(\mu \)-calculus’s collapse over the logics above.

Supported by MEXT, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The winning condition for general formulas is: \(\textsf{V}\) wins a run when \(\textsf{R}\) can’t make a move or the outermost \(\eta X.\psi \) which appears infinitely often in the run is some \(\nu X.\varphi \).

References

  1. Alberucci, L., Facchini, A.: The modal \(\mu \)-calculus hierarchy over restricted classes of transition systems. J. Symbolic Logic 74(4), 1367–1400 (2009). https://doi.org/10.2178/jsl/1254748696

    Article  Google Scholar 

  2. Alberucci, L., Facchini, A.: On modal \(\mu \)-calculus and gödel-löb logic. Stud. Logica. 91(2), 145–169 (2009). https://doi.org/10.1007/s11225-009-9170-9

    Article  Google Scholar 

  3. Arnold, A.: The \(\mu \)-calculus alternation-depth hierarchy is strict on binary trees. RAIRO-Theor. Inform. Appl. 33(4–5), 329–339 (1999). https://doi.org/10.1051/ita:1999121

    Article  Google Scholar 

  4. Aucher, G.: Principles of knowledge, belief and conditional belief. In: Rebuschi, M., Batt, M., Heinzmann, G., Lihoreau, F., Musiol, M., Trognon, A. (eds.) Interdisciplinary Works in Logic, Epistemology, Psychology and Linguistics. LAR, vol. 3, pp. 97–134. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03044-9_5

    Chapter  Google Scholar 

  5. Baltag, A., Bezhanishvili, N., Fernández-Duque, D.: The topological mu-calculus: completeness and decidability. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–13 (2021). https://doi.org/10.1109/lics52264.2021.9470560

  6. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001). cbo9781107050884

    Google Scholar 

  7. Bradfield, J.C.: Simplifying the modal mu-calculus alternation hierarchy. In: Annual Symposium on Theoretical Aspects of Computer Science, pp. 39–49. Springer (1998). https://doi.org/10.1007/bfb0028547

  8. Bradfield, J.C.: The modal mu-calculus alternation hierarchy is strict. Theoret. Comput. Sci. 195(2), 133–153 (1998). https://doi.org/10.1016/s0304-3975(97)00217-x

    Article  Google Scholar 

  9. Bradfield, J., Walukiewicz, I.: The \(\mu \)-calculus and model checking. In: Handbook of Model Checking, pp. 871–919. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_26

    Chapter  Google Scholar 

  10. Carrara, M., Chiffi, D., De Florio, C., Pietarinen, A.: We don’t know we don’t know: asserting ignorance. Synthese 198(4), 3565–3580 (2021). https://doi.org/10.1007/s11229-019-02300-y

    Article  Google Scholar 

  11. D’Agostino, G., Lenzi, G.: On the \(\mu \)-calculus over transitive and finite transitive frames. Theoret. Comput. Sci. 411(50), 4273–4290 (2010). https://doi.org/10.1016/j.tcs.2010.09.002

    Article  Google Scholar 

  12. D’Agostino, G., Lenzi, G.: On modal \(\mu \)-calculus over reflexive symmetric graphs. J. Log. Comput. 23(3), 445–455 (2012). https://doi.org/10.1093/logcom/exs028

    Article  Google Scholar 

  13. Esakia, L.: Intuitionistic logic and modality via topology. Ann. Pure Appl. Logic 127(1–3), 155–170 (2004). https://doi.org/10.1016/j.apal.2003.11.013

    Article  Google Scholar 

  14. Fan, J.: A logic for disjunctive ignorance. J. Philos. Log. 50(6), 1293–1312 (2021). https://doi.org/10.1007/s10992-021-09599-4

    Article  Google Scholar 

  15. Fan, J., Wang, Y., van Ditmarsch, H.: Contingency and knowing whether. Rev. Symbolic Logic 8(1), 75–107 (2015). https://doi.org/10.1017/S1755020314000343

    Article  Google Scholar 

  16. Fine, K.: Ignorance of ignorance. Synthese 195(9), 4031–4045 (2017). https://doi.org/10.1007/s11229-017-1406-z

    Article  Google Scholar 

  17. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4

    Book  Google Scholar 

  18. Hetherington, S.: Good knowledge, bad knowledge: on two dogmas of epistemology. Clarendon Press (2001). https://doi.org/10.1093/acprof:oso/9780199247349.001.0001

    Article  Google Scholar 

  19. Lehrer, K., Paxson, T.: Knowledge: undefeated justified true belief. J. Philos. 66(8), 225–237 (1969). https://doi.org/10.2307/2024435

    Article  Google Scholar 

  20. Lenzen, W.: Recent work in epistemic logic. Acta Philos. Fennica 30, 1–219 (1978)

    Google Scholar 

  21. Lenzi, G.: A hierarchy theorem for the \(\mu \)-calculus. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 87–97. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0_119

    Chapter  Google Scholar 

  22. Lenzi, G.: Recent results on the modal \(\mu \)-calculus: a survey. Rendiconti dell’Istituto di Matematica dell’Università di Trieste 42, 235–255 (2010)

    Google Scholar 

  23. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. Math. 141–191 (1944). https://doi.org/10.2307/1969080

  24. Olsson, E. J., Proietti, C.: Explicating ignorance and doubt: a possible worlds approach. In: The Epistemic Dimensions of Ignorance, pp. 81–95. Cambridge University Press (2016). https://doi.org/10.1017/9780511820076.005

  25. Peels, R., Blaauw, M.: The Epistemic Dimensions of Ignorance. Cambridge University Press, Cambridge (2016). https://doi.org/10.1017/9780511820076

    Book  Google Scholar 

  26. Ranalli, C., van Woudenberg, R.: Collective ignorance: an information theoretic account. Synthese 198(5), 4731–4750 (2019). https://doi.org/10.1007/s11229-019-02367-7

    Article  Google Scholar 

  27. Schwarz, G., Truszczyński, M.: Modal logic s4f and the minimal knowledge paradigm. In: Proceedings of the 4th Conference on Theoretical Aspects of Reasoning about Knowledge, pp. 184–198. Morgan Kaufmann Publishers Inc. (1992). https://doi.org/10.5555/1029762.1029779

  28. Stalnaker, R.: On logics of knowledge and belief. Philos. Stud. Int. J. Philos. Anal. Tradit. 128(1), 169–199 (2006). https://doi.org/10.1007/s11098-005-4062-y

    Article  Google Scholar 

  29. Van Benthem, J., Bezhanishvili, G.: Modal Logics of Space. In: Handbook of spatial logics, pp. 217–298. Springer (2007). https://doi.org/10.1007/978-1-4020-5587-4_5

  30. Van Der Hoek, W., Lomuscio, A.: A logic for ignorance. Electron. Notes Theor. Comput. Sci. 85(2), 117–133 (2004). https://doi.org/10.1007/978-3-540-25932-9_6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Pacheco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pacheco, L., Tanaka, K. (2022). The Alternation Hierarchy of the \(\mu \)-calculus over Weakly Transitive Frames. In: Ciabattoni, A., Pimentel, E., de Queiroz, R.J.G.B. (eds) Logic, Language, Information, and Computation. WoLLIC 2022. Lecture Notes in Computer Science, vol 13468. Springer, Cham. https://doi.org/10.1007/978-3-031-15298-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15298-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15297-9

  • Online ISBN: 978-3-031-15298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics