Skip to main content

Smash: A Compression Benchmark with AI Datasets from Remote GPU Virtualization Systems

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2022)

Abstract

Remote GPU virtualization is a mechanism that allows GPU-accelerated applications to be executed in computers without GPUs. Instead, GPUs from remote computers are used. Applications are not aware of using a remote GPU. However, overall performance depends on the throughput of the underlying network connecting the application to the remote GPUs. One way to increase this bandwidth is to compress transmissions made within the remote GPU virtualization middleware between the application side and the GPU side.

In this paper we make a two-fold contribution. On the one hand, we present a new compression benchmark with more than 40 compression libraries. On the other hand, we have gathered the internal transmissions of a remote GPU virtualization middleware while executing 4 popular artificial intelligence applications. With these data we have created a new dataset for testing compression libraries in this specific domain. Both, the new compression benchmark and the new dataset are publicly available.

This work was supported by the project “AI in Secure Privacy-Preserving Computing Continuum (AI-SPRINT)” through the European Union’s Horizon 2020 Research and Innovation Programme under Grant 101016577.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  2. Talib, M.A., Majzoub, S., Nasir, Q., Jamal, D.: A systematic literature review on hardware implementation of artificial intelligence algorithms. J. Supercomput. 77(2), 1897–1938 (2020). https://doi.org/10.1007/s11227-020-03325-8

    Article  Google Scholar 

  3. Alakuijala, J., et al.: Brotli: a general-purpose data compressor. ACM Trans. Inf. Syst. (TOIS) 37(1), 1–30 (2018)

    Article  Google Scholar 

  4. Giunta, G., Montella, R., Agrillo, G., Coviello, G.: A GPGPU transparent virtualization component for high performance computing clouds. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6271, pp. 379–391. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15277-1_37

    Chapter  Google Scholar 

  5. Gupta, A., et al.: Modern lossless compression techniques: review, comparison and analysis. In: ICECCT, pp. 1–8 (2017)

    Google Scholar 

  6. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  7. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25, pp. 1097–1105 (2012)

    Google Scholar 

  8. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. ATT Labs 2 (2010). http://yann.lecun.com/exdb/mnist

  9. Liu, W., et al.: Data compression device based on modified LZ4 algorithm. IEEE Trans. Consum. Electron. 64(1), 110–117 (2018)

    Article  Google Scholar 

  10. NVIDIA Corporation: NVIDIA multi-instance GPU and NVIDIA virtual compute Server. Technical brief (2020)

    Google Scholar 

  11. NVIDIA Corporation: CUDA (Compute Unified Device Architecture) (2022). https://developer.nvidia.com/cuda-toolkit

  12. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  13. Prades, J., Silla, F.: GPU-job migration: the rCUDA case. IEEE Trans. Parallel Distrib. Syst. 30(12), 2718–2729 (2019). https://doi.org/10.1109/TPDS.2019.2924433

    Article  Google Scholar 

  14. Silla, F., et al.: On the benefits of the remote GPU virtualization mechanism: the rCUDA case. Concurr. Comput. Pract. Exp. 29(13), e4072 (2017)

    Article  Google Scholar 

  15. Szegedy, C., et al.: Rethinking the inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  16. Venu, D., et al.: An efficient low complexity compression based optimal homomorphic encryption for secure fiber optic communication. Optik 252, 168545 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Peñaranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peñaranda, C., Reaño, C., Silla, F. (2022). Smash: A Compression Benchmark with AI Datasets from Remote GPU Virtualization Systems. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2022. Lecture Notes in Computer Science(), vol 13469. Springer, Cham. https://doi.org/10.1007/978-3-031-15471-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15471-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15470-6

  • Online ISBN: 978-3-031-15471-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics