Skip to main content

Personalized Arrhythmia Detection Based on Lightweight Autoencoder and Variational Autoencoder

  • Conference paper
  • First Online:
Databases Theory and Applications (ADC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13459))

Included in the following conference series:

Abstract

Arrhythmia has become one of the important causes of human death. The research on arrhythmia detection has great medical value. In reality, patients’ arrhythmia heartbeat is much less than the normal heartbeat. Supervised classifiers often have the problem of imbalanced training data. Therefore, we propose an unsupervised personalized arrhythmia detection system, called PerAD. PerAD trains a lightweight autoencoder ShaAE for each user for arrhythmia detection. ShaAE only needs to use the user’s personal normal data for training. The encoder and decoder of ShaAE are composed of a lightweight network ShaRNN. ShaRNN is a two-layer RNN structure that can process data in parallel. Thus, ShaAE is easy to deploy to edge wearable devices. We also design a fast-inference variational autoencoder to generate normal simulation samples to assist in training ShaAE. We test ShaAE on MIT-BIH Arrhythmia Database. ShaAE without using simulation data to assist training can achieve 96.86\(\%\) accuracy. ShaAE using simulation samples to assist training can achieve accuracy of 97.11\(\%\) and has 6.19\(\%\) higher performance than state-of-the-art for f1 score.

This work is partially supported by the National Natural Science Foundation of China (Grants No. 61702274), PAPD and the Major Key Project of PCL (Grant No. PCL2022A03, PCL2021A02, PCL2021A09).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, R.U., Fujita, H., Oh, L.S., Hagiwara, Y., Tan, J.H., Adam, M.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 415, 190–198 (2017)

    Article  Google Scholar 

  2. Al Rahhal, M.M., Bazi, Y., AlHichri, H., Alajlan, N., Melgani, F., Yager, R.R.: Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 345, 340–354 (2016)

    Article  Google Scholar 

  3. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Anomaly detection using autoencoders in high performance computing systems. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9428–9433 (2019)

    Google Scholar 

  4. Chalapathy, R., Menon, K.A., Chawla, S.: Anomaly detection using one-class neural networks. arXiv: Learning (2018)

    Google Scholar 

  5. Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-term memory networks. In: Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (IEEE DSAA 2015), pp. 834–840 (2015)

    Google Scholar 

  6. Chen, X., et al.: Atrial fibrillation detection based on multi-feature extraction and convolutional neural network for processing ECG signals. Comput. Methods Programs Biomed. 202, 106009 (2021)

    Article  Google Scholar 

  7. Chen, Y., Zhang, H., Wang, Y., Yang, Y., Zhou, X., Wu, M.J.Q.: MAMA Net: multi-scale attention memory autoencoder network for anomaly detection. IEEE Trans. Med. Imaging 40, 1032–1041 (2021)

    Article  Google Scholar 

  8. Chen, Z., et al.: An energy-efficient ECG processor with weak-strong hybrid classifier for arrhythmia detection. IEEE Trans. Circuits Syst. II Express Briefs 65, 948–952 (2017)

    Article  Google Scholar 

  9. Dennis, K.D., et al.: Shallow RNNs: a method for accurate time-series classification on tiny devices. In: Advances in Neural Information Processing Systems (NIPS 2019), vol. 32 (2019)

    Google Scholar 

  10. Du, J., Michalska, S., Subramani, S., Wang, H., Zhang, Y.: Neural attention with character embeddings for hay fever detection from twitter. Health Inf. Sci. Syst. 7, 1–7 (2019)

    Article  Google Scholar 

  11. Fujiwara, Y., Kanai, S., Arai, J., Ida, Y., Ueda, N.: Efficient data point pruning for one-class SVM. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3590–3597 (2019)

    Google Scholar 

  12. Gong, D., et al.: Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In: 2019 IEEE/CVF International Conference On Computer Vision (ICCV 2019), pp. 1705–1714 (2019)

    Google Scholar 

  13. He, J., Rong, J., Sun, L., Wang, H., Zhang, Y., Ma, J.: A framework for cardiac arrhythmia detection from IoT-based ECGs. World Wide Web 23, 2835–2850 (2020)

    Article  Google Scholar 

  14. Homaeinezhad, R.M., Atyabi, A.S., Tavakkoli, E., Toosi, N.H., Ghaffari, A., Ebrahimpour, R.: ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39, 2047–2058 (2012)

    Article  Google Scholar 

  15. Hou, B., Yang, J., Wang, P., Yan, R.: LSTM-based auto-encoder model for ECG arrhythmias classification. IEEE Trans. Instrum. Meas. 69(4), 1232–1240 (2019)

    Article  Google Scholar 

  16. Javadi, M., Arani, S.A.A.A., Sajedin, A., Ebrahimpour, R.: Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed. Signal Process. Control 8(3), 289–296 (2013)

    Article  Google Scholar 

  17. Jiang, H., Zhou, R., Zhang, L., Wang, H., Zhang, Y.: Sentence level topic models for associated topics extraction. World Wide Web 22, 2545–2560 (2019)

    Article  Google Scholar 

  18. Kingma, P.D., Welling, M.: Auto-encoding variational Bayes. CoRR (2013)

    Google Scholar 

  19. Kiranyaz, S., Ince, T., Gabbouj, M.: Personalized monitoring and advance warning system for cardiac arrhythmias. Sci. Rep. 7, 1–8 (2017)

    Article  Google Scholar 

  20. Lee, J., Park, J.S., Wang, K.N., Feng, B., Tennant, M., Kruger, E.: The use of telehealth during the coronavirus (COVID-19) pandemic in oral and maxillofacial surgery - a qualitative analysis. EAI Endorsed Trans. Scalable Inf. Syst. (2021)

    Google Scholar 

  21. Madan, P., Singh, V., Singh, D.P., Diwakar, M., Kishor, A.: Denoising of ECG signals using weighted stationary wavelet total variation. Biomed. Signal Process. Control 73, 103478 (2022)

    Article  Google Scholar 

  22. Merah, M., Abdelmalik, A.T., Larbi, H.B.: R-peaks detection based on stationary wavelet transform. Comput. Methods Programs Biomed. 121, 149–160 (2015)

    Article  Google Scholar 

  23. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  24. Nagarajan, V., Vijayaraghavan, V., et al.: End-to-end optimized arrhythmia detection pipeline using machine learning for ultra-edge devices. arXiv preprint arXiv:2111.11789 (2021)

  25. Ochiai, K., Takahashi, S., Fukazawa, Y.: Arrhythmia detection from 2-lead ECG using convolutional denoising autoencoders. In: Proceedings of the KDD, pp. 1–7 (2018)

    Google Scholar 

  26. Pandey, D., Wang, H., Yin, X., Wang, K., Zhang, Y., Shen, J.: Automatic breast lesion segmentation in phase preserved DCE-MRIs. Health Inf. Sci. Syst. 10, 1–19 (2022)

    Article  Google Scholar 

  27. Pandey, K.S., Janghel, R.R.: Automated detection of arrhythmia from electrocardiogram signal based on new convolutional encoded features with bidirectional long short-term memory network classifier. Phys. Eng. Sci. Med. 44, 173–182 (2021). https://doi.org/10.1007/s13246-020-00965-1

    Article  Google Scholar 

  28. Rajpurkar, P., Hannun, Y.A., Haghpanahi, M., Bourn, C., Ng, Y.A.: Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv: Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  29. Ruff, L., et al.: Deep one-class classification. In: ICML, pp. 4390–4399 (2018)

    Google Scholar 

  30. Salam, A.K., Srilakshmi, G.: An algorithm for ECG analysis of arrhythmia detection. In: 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (2015)

    Google Scholar 

  31. Sarki, K.R., Ahmed, K., Wang, H., Zhang, Y.: Convolutional neural network for multi-class classification of diabetic eye disease. EAI Endorsed Trans. Scalable Inf. Syst. (2019)

    Google Scholar 

  32. Sarki, R., Ahmed, K., Wang, H., Zhang, Y.: Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Inf. Sci. Syst. 8(1), 1–9 (2020). https://doi.org/10.1007/s13755-020-00125-5

    Article  Google Scholar 

  33. Sun, L., Zhong, Z., Qu, Z., Xiong, N.: PerAE: an effective personalized autoencoder for ECG-based biometric in augmented reality system. IEEE J. Biomed. Health Inform. 26, 2435–2446 (2022)

    Article  Google Scholar 

  34. Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf. Sci. Syst. 8(1), 1–15 (2020). https://doi.org/10.1007/s13755-020-00129-1

    Article  Google Scholar 

  35. Thill, M., Konen, W., Wang, H., Bäck, T.: Temporal convolutional autoencoder for unsupervised anomaly detection in time series. Appl. Soft Comput. 112, 107751 (2021)

    Article  Google Scholar 

  36. Vatti, R.A., Vinoth, K., Sneha, Y.: Edge intelligence for predicting and detecting cardiac pathologies by analyzing stress and anxiety. J. Crit. Rev. 7(18), 2816–2822 (2020)

    Google Scholar 

  37. Xu, G., Xing, G., Jiang, J., Jiang, J., Ke, Y.: Arrhythmia detection using gated recurrent unit network with ECG signals. J. Med. Imaging Health Inform. 10, 750–757 (2020)

    Article  Google Scholar 

  38. Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications. In: Proceedings of the 2018 World Wide Web Conference, pp. 187–196 (2018)

    Google Scholar 

  39. Yao, Q., Wang, R., Fan, X., Liu, J., Li, Y.: Multi-class arrhythmia detection from 12-lead varied-length ECG using attention-based time-incremental convolutional neural network. Inf. Fusion 53, 174–182 (2020)

    Article  Google Scholar 

  40. Yin, C., Zhang, S., Wang, J., Xiong, N.N.: Anomaly detection based on convolutional recurrent autoencoder for IoT time series. IEEE Trans. Syst. Man Cybern. Syst. 52(1), 112–122 (2020)

    Article  Google Scholar 

  41. Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: BeatGAN: anomalous rhythm detection using adversarially generated time series. In: IJCAI, pp. 4433–4439 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, Z., Sun, L., Subramani, S. (2022). Personalized Arrhythmia Detection Based on Lightweight Autoencoder and Variational Autoencoder. In: Hua, W., Wang, H., Li, L. (eds) Databases Theory and Applications. ADC 2022. Lecture Notes in Computer Science, vol 13459. Springer, Cham. https://doi.org/10.1007/978-3-031-15512-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15512-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15511-6

  • Online ISBN: 978-3-031-15512-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics