Skip to main content

Assessing Visual Cues for Improving Awareness in Collaborative Augmented Reality

  • Conference paper
  • First Online:
Extended Reality (XR Salento 2022)

Abstract

Augmented Reality (AR) is an emerging technology that offers new and compelling design opportunities for Computer Supported Cooperative Work (CSCW). To foster collaboration and communication in AR-based CSCW, users should be able to understand how others interact with the shared environment. One of the most effective ways to support this awareness is to link user interactions to visual cues (VCs) that provide immediate cognitive feedback about the actions of other users (e.g., pointing, annotating, or manipulating objects). However, AR-based CSCW is in many ways still in its infancy in terms of visual language, and further research is needed, especially to evaluate the effectiveness of different VCs in improving user awareness in collaborative, co-located AR scenarios. To this end, this paper presents an evaluation of different VCs based on previous literature. Experiments were conducted with different scenarios covering the main purposes for which VCs are used and in which users had to perform tasks with increasing complexity. Results show that volunteers positively evaluated the VCs offered, as they effectively supported user awareness and provided contextual and spatial information to all participants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arvizio, I.: Arvizio (2022). https://www.arvizio.io/. Accessed 21 Apr 2022

  2. Batuwanthudawa, B., Jayasena, K.: Real-time location based augmented reality advertising platform. In: 2020 2nd International Conference on Advancements in Computing (ICAC). IEEE, December 2020. https://doi.org/10.1109/icac51239.2020.9357261

  3. Billinghurst, M., Bee, S., Bowskill, J., Kato, H.: Asymmetries in collaborative wearable interfaces. In: Digest of Papers. Third International Symposium on Wearable Computers, pp. 133–140. IEEE (1999)

    Google Scholar 

  4. Billinghurst, M., Kato, H., Kiyokawa, K., Belcher, D., Poupyrev, I.: Experiments with face-to-face collaborative AR interfaces. Virtual Reality 6(3), 107–121 (2002). https://doi.org/10.1007/s100550200012

    Article  Google Scholar 

  5. Bleeker, T., Lee, G., Billinghurst, M.: Ego-and Exocentric interaction for mobile AR conferencing. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 1–6. IEEE (2013)

    Google Scholar 

  6. BOSCH: Bosch common augmented reality platform (2022). https://www.re-flekt.com/portfolio-item/bosch-common-ar-platform. Accessed 21 Apr 2022

  7. Brooke, J.: SUS: a retrospective. J. Usability Stud. 8(2), 29–40 (2013)

    Google Scholar 

  8. Dillman, K.R., Mok, T.T.H., Tang, A., Oehlberg, L., Mitchell, A.: A visual interaction cue framework from video game environments for augmented reality. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018)

    Google Scholar 

  9. Ens, B., et al.: Revisiting collaboration through mixed reality: the evolution of groupware. Int. J. Hum Comput Stud. 131, 81–98 (2019)

    Article  Google Scholar 

  10. Gauglitz, S., Nuernberger, B., Turk, M., Höllerer, T.: World-stabilized annotations and virtual scene navigation for remote collaboration. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 449–459 (2014)

    Google Scholar 

  11. Guo, A., Canberk, I., Murphy, H., Monroy-Hernández, A., Vaish, R.: Blocks: collaborative and persistent augmented reality experiences. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 3(3), 1–24 (2019). https://doi.org/10.1145/3351241

  12. Gutwin, C., Greenberg, S.: A descriptive framework of workspace awareness for real-time groupware. Comput. Support. Coop. Work (CSCW) 11(3–4), 411–446 (2002). https://doi.org/10.1023/a:1021271517844

    Article  Google Scholar 

  13. Irlitti, A., Piumsomboon, T., Jackson, D., Thomas, B.H.: Conveying spatial awareness cues in XR collaborations. IEEE Trans. Vis. Comput. Graph. 25(11), 3178–3189 (2019)

    Article  Google Scholar 

  14. Johansen, R.: Groupware: Computer Support for Business Teams. The Free Press (1988)

    Google Scholar 

  15. Kantonen, T., Woodward, C., Katz, N.: Mixed reality in virtual world teleconferencing. In: 2010 IEEE Virtual Reality Conference (VR), pp. 179–182. IEEE (2010)

    Google Scholar 

  16. Kim, K., Billinghurst, M., Bruder, G., Duh, H.B.L., Welch, G.F.: Revisiting trends in augmented reality research: a review of the 2nd decade of ISMAR (2008–2017). IEEE Trans. Vis. Comput. Graph. 24(11), 2947–2962 (2018). https://doi.org/10.1109/tvcg.2018.2868591

    Article  Google Scholar 

  17. Kim, S., Lee, G., Huang, W., Kim, H., Woo, W., Billinghurst, M.: Evaluating the combination of visual communication cues for HMD-based mixed reality remote collaboration. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2019)

    Google Scholar 

  18. Kim, S., Lee, G., Sakata, N., Billinghurst, M.: Improving co-presence with augmented visual communication cues for sharing experience through video conference. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 83–92. IEEE (2014)

    Google Scholar 

  19. Kolkmeier, J., Harmsen, E., Giesselink, S., Reidsma, D., Theune, M., Heylen, D.: With a little help from a holographic friend: the openimpress mixed reality telepresence toolkit for remote collaboration systems. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, pp. 1–11 (2018)

    Google Scholar 

  20. Lukosch, S., Billinghurst, M., Alem, L., Kiyokawa, K.: Collaboration in augmented reality. Comput. Support. Coop. Work (CSCW) 24(6), 515–525 (2015). https://doi.org/10.1007/s10606-015-9239-0

    Article  Google Scholar 

  21. Marai, G.E., Forbes, A.G., Johnson, A.: Interdisciplinary immersive analytics at the electronic visualization laboratory: lessons learned and upcoming challenges. In: 2016 Workshop on Immersive Analytics (IA), pp. 54–59. IEEE (2016)

    Google Scholar 

  22. Müller, J., Rädle, R., Reiterer, H.: Remote collaboration with mixed reality displays. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, May 2017. https://doi.org/10.1145/3025453.3025717

  23. Nancel, M., Chapuis, O., Pietriga, E., Yang, X.D., Irani, P.P., Beaudouin-Lafon, M.: High-precision pointing on large wall displays using small handheld devices. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 831–840 (2013)

    Google Scholar 

  24. Pereira, V., Maftos, T., Rodrigues, R., Nóbrega, R., Jacob, J.: Extended reality framework for remote collaborative interactions in virtual environments. In: 2019 International Conference on Graphics and Interaction (ICGI), pp. 17–24. IEEE (2019)

    Google Scholar 

  25. Pidel, C., Ackermann, P.: Collaboration in virtual and augmented reality: a systematic overview. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2020. LNCS, vol. 12242, pp. 141–156. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58465-8_10

    Chapter  Google Scholar 

  26. Pinho, M.S., Bowman, D.A., Freitas, C.M.D.S.: Cooperative object manipulation in collaborative virtual environments. J. Braz. Comput. Soc. 14(2), 53–67 (2009). https://doi.org/10.1007/BF03192559

    Article  Google Scholar 

  27. Piumsomboon, T., Dey, A., Ens, B., Lee, G., Billinghurst, M.: The effects of sharing awareness cues in collaborative mixed reality. Front. Robot. AI 6 (2019). https://doi.org/10.3389/frobt.2019.00005

  28. PTC: Vuforia chalk (2022). https://www.ptc.com/en/products/vuforia/vuforia-chalk. Accessed 21 Apr 2022

  29. Radu, I., Joy, T., Bowman, Y., Bott, I., Schneider, B.: A survey of needs and features for augmented reality collaborations in collocated spaces. Proc. ACM Hum. Comput. Interact. 5(CSCW1), 1–21 (2021). https://doi.org/10.1145/3449243

  30. Reitmayr, G., Schmalstieg, D.: Scalable techniques for collaborative outdoor augmented reality. In: 3rd IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004), Arlington (2004)

    Google Scholar 

  31. Santos, M.E.C., Taketomi, T., Sandor, C., Polvi, J., Yamamoto, G., Kato, H.: A usability scale for handheld augmented reality. In: Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology, pp. 167–176 (2014)

    Google Scholar 

  32. Sereno, M., Wang, X., Besançon, L., McGuffin, M.J., Isenberg, T.: Collaborative work in augmented reality: a survey. IEEE Trans. Vis. Comput. Graph. 28(6), 2530–2549 (2020)

    Google Scholar 

  33. Teo, T., Lee, G.A., Billinghurst, M., Adcock, M.: Investigating the use of different visual cues to improve social presence within a 360 mixed reality remote collaboration. In: The 17th International Conference on Virtual-Reality Continuum and Its Applications in Industry. ACM, November 2019. https://doi.org/10.1145/3359997.3365687

  34. Väyrynen, J., Suoheimo, M., Colley, A., Häkkilä, J.: Exploring head mounted display based augmented reality for factory workers. In: Proceedings of the 17th International Conference on Mobile and Ubiquitous Multimedia. ACM, November 2018. https://doi.org/10.1145/3282894.3289745

  35. Villanueva, A., Zhu, Z., Liu, Z., Peppler, K., Redick, T., Ramani, K.: Meta-AR-app: an authoring platform for collaborative augmented reality in STEM classrooms. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–14 (2020)

    Google Scholar 

  36. Volmer, B., et al.: A comparison of predictive spatial augmented reality cues for procedural tasks. IEEE Trans. Vis. Comput. Graph. 24(11), 2846–2856 (2018)

    Article  Google Scholar 

  37. Wang, X., Dunston, P.S.: Comparative effectiveness of mixed reality-based virtual environments in collaborative design. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 41(3), 284–296 (2011)

    Article  Google Scholar 

  38. Wells, T., Houben, S.: CollabAR-investigating the mediating role of mobile AR interfaces on co-located group collaboration. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Strada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Strada, F., Battegazzorre, E., Ameglio, E., Turello, S., Bottino, A. (2022). Assessing Visual Cues for Improving Awareness in Collaborative Augmented Reality. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2022. Lecture Notes in Computer Science, vol 13445. Springer, Cham. https://doi.org/10.1007/978-3-031-15546-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15546-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15545-1

  • Online ISBN: 978-3-031-15546-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics