Abstract
The interest in the online shopping field has increased considerably nowadays. This has led to emerging technologies being applied in this context. One of the sectors to which particular attention has been paid is the clothing sale. The main reason comes from the problem of physically trying on clothes to choose the correct size. This issue can be addressed using methodologies based on virtual reality and Human-Computer Interaction (HCI). This paper presents a Virtual Dressing Room (VDR) application named TryItOn that allows the user to try on digital clothes. The proposed solution offers an immersive and realistic experience by combining a high degree of photorealism, the presence of an avatar with accurate measurements, the natural interaction with the environment through movements of hands or the entire body, and the use of a real-time physical simulation of the garment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hero. https://www.usehero.com/
Dionisio III, J.D.N., Burns, W.G., Gilbert, R.: 3D virtual worlds and the metaverse: current status and future possibilities. ACM Comput. Surv. 45(3), 1–38 (2013). https://doi.org/10.1145/2480741.2480751
styleme. https://style.me/virtual-fitting/
asizer. https://www.asizer.com/
Va, H., Choi, M.H., Hong, M.: Parallel cloth simulation using OpenGL shading language. Comput. Syst. Sci. Eng. 41, 427–443 (2022)
Ivanov Vassilev, T.: Real-time velocity based cloth simulation with ray-tracing collision detection on the graphics processor. In: 2021 International Conference on Information Technologies (InfoTech), pp. 1–5 (2021). https://doi.org/10.1109/InfoTech52438.2021.9548602
Unreal Engine. https://www.unrealengine.com/en-US/
Azure Kinect DK. https://azure.microsoft.com/en-us/services/kinect-dk/#overview
Azure Kinect Sensor SDK. https://github.com/Microsoft/Azure-Kinect-Sensor-SDK
Azure Kinect Body Tracking SDK. https://docs.microsoft.com/en-us/azure/Kinect-dk/body-sdk-download
Blender 2.92. https://docs.blender.org/manual/en/2.92/index.html#
Beck, B.: Key Strategic Issues in Online Apparel Retailing, May 1999. https://dan.yourfit.com/
Cordier, F., Lee, W.S., Seo, H., Thalmann, N.: From 2D photos of yourself to virtual try-on dress on the web. In: Blandford, A., Vanderdonckt, J., Gray, P. (eds.) People and Computers–Interaction without Frontiers, pp. 31–26. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0353-0_3
Kjærside, K., Kortbek, K.J., Hedegaard, H., Grønbæk, K.: ARDressCode: augmented dressing room with tag-based motion tracking and real-time clothes simulation. In: Proceedings of the central European Multimedia and Virtual Reality Conference, pp. 511–515 (2005)
Biswas, A., Dutta, S., Dey, N., Azar, A.: A Kinect-less augmented reality approach to real-time tag-less virtual trial room simulation. Int. J. Serv. Sci. Manag. Eng. Technol. 5, 16 (2015). https://doi.org/10.4018/ijssmet.2014100102
Erra, U., Colonnese, V.: Experiences in the development of an augmented reality dressing room. In: International Conference on Augmented and Virtual Reality, pp. 467–474 (2015). https://doi.org/10.1007/978-3-319-22888-4_35
Adikari, S.B, Ganegoda, N.C., Meegama, R.G., Wanniarachchi, I.L.: Applicability of a single depth sensor in real-time 3d clothes simulation: augmented reality virtual dressing room using Kinect sensor. Adv. Human Comput. Interact. 2020, 1–10 (2020). https://doi.org/10.1155/2020/1314598
Capece, N., Erra, U., Romaniello, G.: A low-cost full body tracking system in virtual reality based on Microsoft Kinect. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 623–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_44
Kotan, M., Oz, C.: Virtual dressing room application with virtual human using Kinect sensor. J. Mech. Eng. Autom. 5, 333326 (2015). https://doi.org/10.17265/2159-5275/2015.05.008
Uğur, B., Sahiner, A.V.: A parametric human body modeling tool. In: Proceedings of ISCN 2008 - 8th International Symposium on Computer Networks, January 2008
Yoshino, N., Karungaru, S., Terada, K.: Body physical measurement using Kinect for vitual dressing room. In: 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), pp. 847–852, July 2017. https://doi.org/10.1109/IIAI-AAI.2017.207
Protopsaltou, D., Luible-Bär, C., Marlene, A., Thalmann, N.: A body and garment creation method for an internet based virtual fitting room. In: Advances in Modelling, Animation and Rendering, pp. 105–122. Springer, London (2002). https://doi.org/10.1007/978-1-4471-0103-1_7
Zhong, Y.: Fast penetration resolving for multi-layered virtual garment dressing. Text. Res. J. 79(9), 815–821 (2009)
Poonpong, B., Charlee, K., Salin, B.: realistic simulation in virtual fitting room using physical properties of fabrics. Proc. Comput. Sci. 75, 12–16 (2015). https://doi.org/10.1016/j.procs.2015.12.189
Holte, M.: 3D scanning of clothing using a RGB-D sensor with application in a virtual dressing room. In: Duffy, V. (eds.) Advances in Applied Digital Human Modeling and Simulation. Advances in Intelligent Systems and Computing, vol. 481, pp. 143–153. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-41627-4_14
MB-Lab. https://mb-lab-community.github.io/MB-Lab.github.io/
Fielding, R., Taylor, R.: Principled design of the modern web architecture. In: Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium, pp. 407–416 (2000). https://doi.org/10.1145/337180.337228
Rong, Y., Shiratori, T., Joo, H.: FrankMocap: a monocular 3D whole-body pose estimation system via regression and integration. In: IEEE International Conference on Computer Vision Workshops (2021)
Lugaresi, C., et al.: MediaPipe: a framework for perceiving and processing reality. In: Third Workshop on Computer Vision for AR/VR at IEEE Computer Vision and Pattern Recognition (CVPR) 2019 (2019). https://mixedreality.cs.cornell.edu/s/NewTitle_May1_MediaPipe_CVPR_CV4ARVR_Workshop_2019.pdf
Cao, Z., Martinez, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172–1861 (2019). https://doi.org/10.1109/TPAMI.2019.2929257
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Manfredi, G., Capece, N., Erra, U., Gilio, G., Baldi, V., Di Domenico, S.G. (2022). TryItOn: A Virtual Dressing Room with Motion Tracking and Physically Based Garment Simulation. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2022. Lecture Notes in Computer Science, vol 13445. Springer, Cham. https://doi.org/10.1007/978-3-031-15546-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-15546-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15545-1
Online ISBN: 978-3-031-15546-8
eBook Packages: Computer ScienceComputer Science (R0)