Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13560))

  • 625 Accesses

Abstract

Many natural and artificial systems studied across a variety of disciplines, from biology to social sciences, consist of relatively simple agents with a partial knowledge of the system as a whole, where complex collective dynamics that are difficult to anticipate emerge from local interaction. We argue how formal methods broadly understood can be of assistance in such studies with a systematic approach to specification and analysis. To convey our argument, we elaborate a proof of concept inspired from an instance of emergent behaviour commonly observed in flocks of birds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The tool is available at https://github.com/labs-lang/sliver.

References

  1. Alaliyat, S., Yndestad, H., Sanfilippo, F.: Optimisation of Boids swarm model based on genetic algorithm and particle swarm optimisation algorithm (comparative study). In: Squazzoni, F., Baronio, F., Archetti, C., Castellani, M. (eds.) 28th European Conference on Modelling and Simulation, ECMS 2014, Brescia, Italy, 27–30 May 2014, pp. 643–650. European Council for Modeling and Simulation (2014). https://doi.org/10.7148/2014-0643

  2. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order reduction in symbolic state space exploration. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 340–351. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_34

    Chapter  Google Scholar 

  3. Ballerini, M., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Nat. Acad. Sci. 105(4), 1232–1237 (2008). https://doi.org/10.1073/pnas.0711437105, www.pnas.org/doi/abs/10.1073/pnas.0711437105

  4. Bialek, W., et al.: Statistical mechanics for natural flocks of birds. Proc. Natl. Acad. Sci. 109(13), 4786–4791 (2012)

    Article  Google Scholar 

  5. Blondin, M., Esparza, J., Jaax, S.: Peregrine: a tool for the analysis of population protocols. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 604–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_34

    Chapter  Google Scholar 

  6. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

    Chapter  Google Scholar 

  7. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011). https://doi.org/10.1007/978-0-387-70914-7

    Book  MATH  Google Scholar 

  8. Casadei, R., Viroli, M.: Programming actor-based collective adaptive systems. In: Ricci, A., Haller, P. (eds.) Programming with Actors. LNCS, vol. 10789, pp. 94–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00302-9_4

    Chapter  Google Scholar 

  9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15

    Chapter  MATH  Google Scholar 

  10. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028741

    Chapter  Google Scholar 

  11. Cont, R., Bouchaud, J.P.: Herd behavior and aggregate fluctuations in financial markets. Macroecon. Dyn. 4(2), 170–196 (2000)

    Article  Google Scholar 

  12. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  13. Craig, W.: Appetites and aversions as constituents of instincts. Biol. Bull. 34(2), 91–107 (1918)

    Article  Google Scholar 

  14. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stigmergy. Sci. Compu. Program. 187, 102345 (2020). https://doi.org/10.1016/j.scico.2019.102345

    Article  Google Scholar 

  15. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior, pp. 356–365 (1991)

    Google Scholar 

  16. Di Stefano, L., De Nicola, R., Inverso, O.: Verification of distributed systems via sequential emulation. ACM Trans. Softw. Eng. Methodol. 31(3), 1–41 (2022). https://doi.org/10.1145/3490387

    Article  Google Scholar 

  17. Emlen, J.T.: Flocking behavior in birds. The Auk 69(2), 160–170 (1952)

    Article  Google Scholar 

  18. Grégoire, G., Chaté, H., Tu, Y.: Moving and staying together without a leader. Phys. D: Nonlinear Phenom. 181(3–4), 157–170 (2003)

    Article  MathSciNet  Google Scholar 

  19. Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction: parameterized model checking of threshold-based distributed algorithms. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 85–102. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_6

    Chapter  Google Scholar 

  20. Kouvaros, P., Lomuscio, A.: A counter abstraction technique for the verification of robot swarms. In: Bonet, B., Koenig, S. (eds.) 29th Conference on Artificial Intelligence (AAAI), pp. 2081–2088. AAAI (2015)

    Google Scholar 

  21. Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robot. Auton. Syst. 30(1–2), 85–101 (2000)

    Article  Google Scholar 

  22. Norris, K.S., Schilt, C.R.: Cooperative societies in three-dimensional space: on the origins of aggregations, flocks, and schools, with special reference to dolphins and fish. Ethol. Sociobiol. 9(2–4), 149–179 (1988)

    Article  Google Scholar 

  23. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: Stone, M.C. (ed.) Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, Anaheim, 27–31 July 1987, pp. 25–34. ACM (1987). https://doi.org/10.1145/37401.37406

  24. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 127–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40922-X_8

    Chapter  Google Scholar 

  25. Sumpter, D.J.: The principles of collective animal behaviour. Philos. Trans. Royal Soc. B: Biol. Sci. 361(1465), 5–22 (2006)

    Article  Google Scholar 

  26. Trotter, W.: Instincts of the Herd in Peace and War. TF Unwin Limited (1920)

    Google Scholar 

  27. Valentini, G., Hamann, H., Dorigo, M., et al.: Self-organized collective decision making: the weighted voter model. In: AAMAS, pp. 45–52 (2014)

    Google Scholar 

  28. Wheeler, W.M.: The Social Insects: Their Origin and Evolution. Routledge, Abingdon (2015)

    Book  Google Scholar 

  29. Zedadra, O., Guerrieri, A., Jouandeau, N., Spezzano, G., Seridi, H., Fortino, G.: Swarm intelligence and IoT-based smart cities: a review. In: Cicirelli, F., Guerrieri, A., Mastroianni, C., Spezzano, G., Vinci, A. (eds.) The Internet of Things for Smart Urban Ecosystems. IT, pp. 177–200. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96550-5_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serenella Valiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Nicola, R., Di Stefano, L., Inverso, O., Valiani, S. (2022). Process Algebras and Flocks of Birds. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds) A Journey from Process Algebra via Timed Automata to Model Learning . Lecture Notes in Computer Science, vol 13560. Springer, Cham. https://doi.org/10.1007/978-3-031-15629-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15629-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15628-1

  • Online ISBN: 978-3-031-15629-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics