Skip to main content

Semantics for Conditional Literals via the SM Operator

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2022)

Abstract

Conditional literals are an expressive Answer Set Programming language construct supported by the solver clingo. Their semantics are currently defined by a translation to infinitary propositional logic, however, we develop an alternative characterization with the SM operator which does not rely on grounding. This allows us to reason about the behavior of a broad class of clingo programs/encodings containing conditional literals, without referring to a particular input/instance of an encoding. We formalize the intuition that conditional literals behave as nested implications, and prove the equivalence of our semantics to those implemented by clingo.

Z. Hansen and Y. Lierler—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195

    Article  Google Scholar 

  2. Cabalar, P., Fandinno, J., Lierler, Y.: Modular answer set programming as a formal specification language. Theory Pract. Logic Program. 20(5), 767–782 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fandinno, J., Hansen, Z., Lierler, Y.: Arguing correctness of asp programs with aggregates (2022), (Accepted to LPNMR-22)

    Google Scholar 

  4. Fandinno, J., Hansen, Z., Lierler, Y.: Axiomatization of aggregates in answer set programming. In: Proceedings of the Thirty-six National Conference on Artificial Intelligence (AAAI 2022). AAAI Press (2022)

    Google Scholar 

  5. Fandinno, J., Lifschitz, V.: Verification of locally tight programs (2022). http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127938

  6. Fandinno, J., Lifschitz, V., Lühne, P., Schaub, T.: Verifying tight logic programs with anthem and vampire. Theory Pract. Logic Program. 20(5), 735–750 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intell. 175(1), 236–263 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general theory of stable models. In: Boutilier, C. (ed.) Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 797–803. AAAI/MIT Press (2009)

    Google Scholar 

  9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo. http://potassco.org

  10. Harrison, A., Lifschitz, V., Yang, F.: The semantics of gringo and infinitary propositional formulas. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2014). AAAI Press (2014)

    Google Scholar 

  11. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to build your own ASP-based system?! Theory and Practice of Logic Programming, p. 1–63 (2021). https://doi.org/10.1017/S1471068421000508

  12. Lifschitz, V.: Thirteen definitions of a stable model. In: Fields of Logic and Computation: Essays Dedicated to Yuri Gurevich on the Occasion of his 70th Birthday (2010)

    Google Scholar 

  13. Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming Paradigm, pp. 375–398. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-60085-2_17

  14. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3), 241–273 (1999). https://doi.org/10.1023/A:1018930122475

    Article  MathSciNet  MATH  Google Scholar 

  15. Truszczynski, Miroslaw: Connecting first-order ASP and the logic FO(ID) through reducts. In: Erdem, Esra, Lee, Joohyung, Lierler, Yuliya, Pearce, David (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 543–559. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30743-0_37

    Chapter  Google Scholar 

Download references

Acknowledgements

The work was partially supported by NSF grant 1707371. We are grateful to Jorge Fandinno, Vladimir Lifschitz, and Miroslaw Truszczynski for valuable discussions and comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliya Lierler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hansen, Z., Lierler, Y. (2022). Semantics for Conditional Literals via the SM Operator. In: Gottlob, G., Inclezan, D., Maratea, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2022. Lecture Notes in Computer Science(), vol 13416. Springer, Cham. https://doi.org/10.1007/978-3-031-15707-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15707-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15706-6

  • Online ISBN: 978-3-031-15707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics