Abstract
This work presents a real-life application developed to assist adhesive experts in the selection of suitable adhesives. As the popularity of adhesive joints in industry increases, so does the need for tools to support the selection process. While such tools already exist, they are either too limited in scope, or offer too little flexibility in use. In this work, we first extract experts’ knowledge about this domain and formalize it in a Knowledge Base (KB). The IDP-Z3 reasoning system can then be used to derive the necessary functionality from this KB. Together with a user-friendly interactive interface, this creates an easy-to-use tool capable of assisting the adhesive experts. The experts are positive about the tool, stating that it will help save time and find more suitable adhesives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
such as www.adhesivestoolkit.com and www.adhesives.org.
- 2.
also written as FO-dot.
- 3.
- 4.
References
Aerts, B., Deryck, M., Vennekens, J.: Knowledge-based decision support for machine component design: a case study. Exp. Syst. Appl. 187, 115869 (2022), https://www.sciencedirect.com/science/article/pii/S0957417421012288
Carbonnelle, P., Aerts, B., Deryck, M., Vennekens, J., Denecker, M.: An interactive consultant. In: Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (BENELEARN 2019), Brussels, Belgium, 6–8 November 2019. CEUR workshop proceedings, vol. 2491. CEUR-WS.org (2019)
Carbonnelle, P., Vandevelde, S., Vennekens, J., Denecker, M.: IDP-Z3: a reasoning engine for FO(.) (2022). https://arxiv.org/abs/2202.00343
De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as a modeling language: the IDP system. In: Kifer, M., Liu, Y.A. (eds.) Declarative Logic Programming: Theory, Systems, and Applications, pp. 279–323. ACM (September 2018). https://dl.acm.org/citation.cfm?id=3191321
Denecker, M., Vennekens, J.: Building a knowledge base system for an integration of logic programming and classical logic. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 71–76. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_12
Deryck, M., Devriendt, J., Marynissen, S., Vennekens, J.: Legislation in the knowledge base paradigm: interactive decision enactment for registration duties. In: Proceedings of the 13th IEEE Conference on Semantic Computing, pp. 174–177. IEEE (2019)
Deryck, M., Vennekens, J.: An integrated method for knowledge management in product configuration projects. In: Andersen, A.-L., et al. (eds.) CARV/MCPC -2021. LNME, pp. 860–868. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-90700-6_98
Kellar, E.J.C.: Key issues in selecting the right adhesive. In: Dillard, D.A. (ed.) Advances in Structural Adhesive Bonding, pp. 3–19. Woodhead Publishing in Materials, Woodhead Publishing (2010). https://www.sciencedirect.com/science/article/pii/B9781845694357500018
Kannan, T., Prabu, S.S.: Expert system for selection of adhesives. In: Proceedings of the Recent Developments in Materials Processing Conference (2004)
Lammel, C., Dilger, K.: Software for a rule-based adhesive-selection system. Adhes. Sealants Ind. 9(5), 42–43 (2002)
Lees, W., Selby, P.: The PAL program mark II. Int. J. Adhes. Adhes. 13(2), 120–125 (1993)
Meyler, K.L., Brescia, J.A.: Design of a computer expert system for adhesive selection using artificial intelligence techniques. Technical report, Army armament research development and engineering center Picatinny Arsenal (1993)
Moseley, L., Cartwright, M.: The development of an expert system for operational use in the selection of industrial adhesives. Eng. Appl. Artif. Intell. 5(4), 319–328 (1992)
Object Modelling Group: Decision model and notation v1.3 (2021). http://www.omg.org/spec/DMN/
Rb, A., Hh, V.: Expert-system selects adhesives for composite-material joints. Adhes. Age 38(7), 16–19 (1995)
da Silva, L.F.M., Öchsner, A., Adams, R.D.: Introduction to adhesive bonding technology. In: da Silva, L.F.M., Öchsner, A., Adams, R.D. (eds.) Handbook of Adhesion Technology, pp. 1–7. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-55411-2_1
Su, Y., Srihari, K., Adriance, J.: A knowledge update mechanism for an adhesive advisor. Comput. Ind. Eng. 25(1–4), 111–114 (1993)
Vandevelde, S., Aerts, B., Vennekens, J.: Tackling the DM challenges with cDMN: a tight integration of DMN and constraint reasoning. In: Theory and Practice of Logic Programming. Cambridge University Press (CUP) (2021)
Acknowledgements
This research received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme and Flanders Make vzw.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vandevelde, S., Jordens, J., Van Doninck, B., Witters, M., Vennekens, J. (2022). Knowledge-Based Support for Adhesive Selection. In: Gottlob, G., Inclezan, D., Maratea, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2022. Lecture Notes in Computer Science(), vol 13416. Springer, Cham. https://doi.org/10.1007/978-3-031-15707-3_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-15707-3_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15706-6
Online ISBN: 978-3-031-15707-3
eBook Packages: Computer ScienceComputer Science (R0)