Skip to main content

Knowledge-Based Support for Adhesive Selection

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2022)

Abstract

This work presents a real-life application developed to assist adhesive experts in the selection of suitable adhesives. As the popularity of adhesive joints in industry increases, so does the need for tools to support the selection process. While such tools already exist, they are either too limited in scope, or offer too little flexibility in use. In this work, we first extract experts’ knowledge about this domain and formalize it in a Knowledge Base (KB). The IDP-Z3 reasoning system can then be used to derive the necessary functionality from this KB. Together with a user-friendly interactive interface, this creates an easy-to-use tool capable of assisting the adhesive experts. The experts are positive about the tool, stating that it will help save time and find more suitable adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    such as www.adhesivestoolkit.com and www.adhesives.org.

  2. 2.

    also written as FO-dot.

  3. 3.

    www.IDP-Z3.be.

  4. 4.

    www.cdmn.be.

References

  1. Aerts, B., Deryck, M., Vennekens, J.: Knowledge-based decision support for machine component design: a case study. Exp. Syst. Appl. 187, 115869 (2022), https://www.sciencedirect.com/science/article/pii/S0957417421012288

  2. Carbonnelle, P., Aerts, B., Deryck, M., Vennekens, J., Denecker, M.: An interactive consultant. In: Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (BENELEARN 2019), Brussels, Belgium, 6–8 November 2019. CEUR workshop proceedings, vol. 2491. CEUR-WS.org (2019)

    Google Scholar 

  3. Carbonnelle, P., Vandevelde, S., Vennekens, J., Denecker, M.: IDP-Z3: a reasoning engine for FO(.) (2022). https://arxiv.org/abs/2202.00343

  4. De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G., Denecker, M.: Predicate logic as a modeling language: the IDP system. In: Kifer, M., Liu, Y.A. (eds.) Declarative Logic Programming: Theory, Systems, and Applications, pp. 279–323. ACM (September 2018). https://dl.acm.org/citation.cfm?id=3191321

  5. Denecker, M., Vennekens, J.: Building a knowledge base system for an integration of logic programming and classical logic. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 71–76. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_12

    Chapter  MATH  Google Scholar 

  6. Deryck, M., Devriendt, J., Marynissen, S., Vennekens, J.: Legislation in the knowledge base paradigm: interactive decision enactment for registration duties. In: Proceedings of the 13th IEEE Conference on Semantic Computing, pp. 174–177. IEEE (2019)

    Google Scholar 

  7. Deryck, M., Vennekens, J.: An integrated method for knowledge management in product configuration projects. In: Andersen, A.-L., et al. (eds.) CARV/MCPC -2021. LNME, pp. 860–868. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-90700-6_98

    Chapter  Google Scholar 

  8. Kellar, E.J.C.: Key issues in selecting the right adhesive. In: Dillard, D.A. (ed.) Advances in Structural Adhesive Bonding, pp. 3–19. Woodhead Publishing in Materials, Woodhead Publishing (2010). https://www.sciencedirect.com/science/article/pii/B9781845694357500018

  9. Kannan, T., Prabu, S.S.: Expert system for selection of adhesives. In: Proceedings of the Recent Developments in Materials Processing Conference (2004)

    Google Scholar 

  10. Lammel, C., Dilger, K.: Software for a rule-based adhesive-selection system. Adhes. Sealants Ind. 9(5), 42–43 (2002)

    Google Scholar 

  11. Lees, W., Selby, P.: The PAL program mark II. Int. J. Adhes. Adhes. 13(2), 120–125 (1993)

    Article  Google Scholar 

  12. Meyler, K.L., Brescia, J.A.: Design of a computer expert system for adhesive selection using artificial intelligence techniques. Technical report, Army armament research development and engineering center Picatinny Arsenal (1993)

    Google Scholar 

  13. Moseley, L., Cartwright, M.: The development of an expert system for operational use in the selection of industrial adhesives. Eng. Appl. Artif. Intell. 5(4), 319–328 (1992)

    Article  Google Scholar 

  14. Object Modelling Group: Decision model and notation v1.3 (2021). http://www.omg.org/spec/DMN/

  15. Rb, A., Hh, V.: Expert-system selects adhesives for composite-material joints. Adhes. Age 38(7), 16–19 (1995)

    Google Scholar 

  16. da Silva, L.F.M., Öchsner, A., Adams, R.D.: Introduction to adhesive bonding technology. In: da Silva, L.F.M., Öchsner, A., Adams, R.D. (eds.) Handbook of Adhesion Technology, pp. 1–7. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-55411-2_1

    Chapter  Google Scholar 

  17. Su, Y., Srihari, K., Adriance, J.: A knowledge update mechanism for an adhesive advisor. Comput. Ind. Eng. 25(1–4), 111–114 (1993)

    Article  Google Scholar 

  18. Vandevelde, S., Aerts, B., Vennekens, J.: Tackling the DM challenges with cDMN: a tight integration of DMN and constraint reasoning. In: Theory and Practice of Logic Programming. Cambridge University Press (CUP) (2021)

    Google Scholar 

Download references

Acknowledgements

This research received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme and Flanders Make vzw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Vandevelde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vandevelde, S., Jordens, J., Van Doninck, B., Witters, M., Vennekens, J. (2022). Knowledge-Based Support for Adhesive Selection. In: Gottlob, G., Inclezan, D., Maratea, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2022. Lecture Notes in Computer Science(), vol 13416. Springer, Cham. https://doi.org/10.1007/978-3-031-15707-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15707-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15706-6

  • Online ISBN: 978-3-031-15707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics