Skip to main content

A Comparative Study of Three Neural-Symbolic Approaches to Inductive Logic Programming

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13416))

  • 654 Accesses

Abstract

An interesting feature that traditional approaches to inductive logic programming are missing is the ability to treat noisy and non-logical data. Neural-symbolic approaches to inductive logic programming have been recently proposed to combine the advantages of inductive logic programming, in terms of interpretability and generalization capability, with the characteristic capacity of deep learning to treat noisy and non-logical data. This paper concisely surveys and briefly compares three promising neural-symbolic approaches to inductive logic programming that have been proposed in the last five years. The considered approaches use Datalog dialects to represent background knowledge, and they are capable of producing reusable logical rules from noisy and non-logical data. Therefore, they provide an effective means to combine logical reasoning with state-of-the-art machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-symbolic techniques for XAI: a survey. Intelligenza Artificiale 14(1), 7–32 (2020)

    Article  Google Scholar 

  2. Cropper, A., Dumančić, S., Evans, R., Muggleton, S.H.: Inductive logic programming at 30. Mach. Learn. 111, 147–172 (2022). https://doi.org/10.1007/s10994-021-06089-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Dai, W.Z., Muggleton, S.: Abductive knowledge induction from raw data. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI 2021), pp. 1845–1851. International Joint Conferences on Artificial Intelligence Organization (2021)

    Google Scholar 

  4. De Raedt, L., Dumančić, S., Manhaeve, R., Marra, G.: From statistical relational to neural-symbolic artificial intelligence. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI 2020), pp. 4943–4950. International Joint Conferences on Artificial Intelligence Organization (2021)

    Google Scholar 

  5. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif. Intell. Res. 61, 1–64 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318 (1991)

    Article  MATH  Google Scholar 

  7. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1), 49–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Payani, A., Fekri, F.: Inductive logic programming via differentiable deep neural logic networks. arXiv preprint arXiv:1906.03523 (2019)

  9. Payani, A., Fekri, F.: Learning algorithms via neural logic networks. arXiv preprint arXiv:1904.01554 (2019)

  10. Sarker, M.K., Zhou, L., Eberhart, A., Hitzler, P.: Neuro-symbolic artificial intelligence: current trends. arXiv preprint arXiv:2105.05330 (2021)

  11. Yu, D., Yang, B., Liu, D., Wang, H.: A survey on neural-symbolic systems. arXiv preprint arXiv:2111.08164 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Bergenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beretta, D., Monica, S., Bergenti, F. (2022). A Comparative Study of Three Neural-Symbolic Approaches to Inductive Logic Programming. In: Gottlob, G., Inclezan, D., Maratea, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2022. Lecture Notes in Computer Science(), vol 13416. Springer, Cham. https://doi.org/10.1007/978-3-031-15707-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15707-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15706-6

  • Online ISBN: 978-3-031-15707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics