Skip to main content

On Improved Interval Cover Mechanisms for Crowdsourcing Markets

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13584))

Included in the following conference series:

  • 680 Accesses

Abstract

We study a covering problem motivated by spatial models in crowdsourcing markets, where tasks are ordered according to some geographic or temporal criterion. Assuming that each participating bidder can provide a certain level of contribution for a subset of consecutive tasks, and that each task has a demand requirement, the goal is to find a set of bidders of minimum cost, who can meet all the demand constraints. Our focus is on truthful mechanisms with approximation guarantees against the optimal cost. To this end, we obtain two main results. The first one, is a truthful mechanism that achieves a bounded approximation guarantee. This mechanism improves the state of the art, which is a mechanism with an arbitrarily large factor in worst case. The second one, concerns a class of instances that generalizes the minimum knapsack problem. Namely, we consider inputs with a constant number of tasks, for which we provide a truthful FPTAS. Finally, we also highlight connections of our problem with other well-studied optimization problems, out of which, we infer further conclusions on its (in)approximability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is convenient to highlight the dependence on \(\textbf{b}\), especially when arguing about truthful mechanisms in the remaining sections.

  2. 2.

    For a similar reason, the 40-approximation for cmic by [11], which uses as a subroutine a primal-dual algorithm involving a “delete phase”, is non-monotone as well.

  3. 3.

    Originally, the problem was defined using a semi-closed interval for each activity, but it is easy to see that defining it using a closed one instead, is equivalent and more convenient for our purposes.

  4. 4.

    It becomes clear in the next subsection, that the dynamic programming procedure is only needed for integral cost values.

References

  1. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplittable flow on line graphs. In: Proceedings of the 38th ACM Symposium on Theory of Computing, pp. 721–729 (2006)

    Google Scholar 

  2. Bansal, N., Pruhs, K.: The geometry of scheduling. SIAM J. Comput. 43(5), 1684–1698 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating resource allocation and scheduling. J. ACM 48(5), 1069–1090 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: The local ratio technique and its application to scheduling and resource allocation problems. In: Golumbic, M.C., Hartman, I.B.A. (eds.) Graph Theory, Combinatorics and Algorithms, pp. 107–143. Springer, Cham (2005). https://doi.org/10.1007/0-387-25036-0_5

    Chapter  MATH  Google Scholar 

  5. Blumrosen, L., Nisan, N.: Algorithmic Game Theory. Introduction to Mechanism Design. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  6. Bonsma, P., Schulz, J., Wiese, A.: A constant-factor approximation algorithm for unsplittable flow on paths. SIAM J. Comput. 43(2), 767–799 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., Talmon, N.: Mixed integer programming with convex/concave constraints: fixed-parameter tractability and applications to multicovering and voting. Theor. Comput. Sci. 814, 86–105 (2020)

    Article  MathSciNet  Google Scholar 

  8. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. SIAM J. Comput. 40(6), 1587–1622 (2011)

    Article  MathSciNet  Google Scholar 

  9. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 106–115 (2000)

    Google Scholar 

  10. Chakaravarthy, V.T., Kumar, A., Roy, S., Sabharwal, Y.: Resource allocation for covering time varying demands. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 543–554. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5_46

    Chapter  Google Scholar 

  11. Chakrabarty, D., Grant, E., Könemann, J.: On column-restricted and priority covering integer programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 355–368. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13036-6_27

    Chapter  MATH  Google Scholar 

  12. Chen, B., Hassin, R., Tzur, M.: Allocation of bandwidth and storage. IIE Trans. 34(5), 501–507 (2002)

    Google Scholar 

  13. Chen, J., Ye, D., Ji, S., He, Q., Xiang, Y., Liu, Z.: A truthful FPTAS mechanism for emergency demand response in colocation data centers. In: Proceedings of the IEEE International Conference on Computer Communications-INFOCOM (2019)

    Google Scholar 

  14. Chrobak, M., Woeginger, G.J., Makino, K., Xu, H.: Caching is hard-even in the fault model. Algorithmica 63(4), 781–794 (2012)

    Article  MathSciNet  Google Scholar 

  15. Cramton, P., Shoham, Y., Steinberg, R., et al.: Combinatorial auctions. Technical report, University of Maryland (2006)

    Google Scholar 

  16. Cristi, A., Mari, M., Wiese, A.: Fixed-parameter algorithms for unsplittable flow cover. Theory of Computing Systems (2021)

    Google Scholar 

  17. Csirik, J.: Heuristics for the 0-1 min-knapsack problem. Acta Cybernetica (1991)

    Google Scholar 

  18. Dayama, P., Narayanaswamy, B., Garg, D., Narahari, Y.: Truthful interval cover mechanisms for crowdsourcing applications. In: Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems (2015)

    Google Scholar 

  19. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005)

    Article  MathSciNet  Google Scholar 

  20. Elkind, E., Goldberg, L.A., Goldberg, P.W.: Frugality ratios and improved truthful mechanisms for vertex cover. In: Proceedings of the 8th ACM Conference on Electronic Commerce (2007)

    Google Scholar 

  21. Feldmann, A., Karthik, C., Lee, E., Manurangsi, P.: A survey on approximation in parameterized complexity: hardness and algorithms. Algorithms 13(6) (2020)

    Google Scholar 

  22. Fujito, T., Yabuta, T.: Submodular integer cover and its application to production planning. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 154–166. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31833-0_14

    Chapter  MATH  Google Scholar 

  23. Gálvez, W., Grandoni, F., Ingala, S., Heydrich, S., Khan, A., Wiese, A.: Approximating geometric Knapsack via L-packings. ACM Trans. Algorithms 17(4), 1–67 (2021)

    Article  MathSciNet  Google Scholar 

  24. Gavenciak, T., Knop, D., Koutecký, M.: Integer programming in parameterized complexity: three miniatures. In: 13th International Symposium on Parameterized and Exact Computation, pp. 21:1–21:16 (2019)

    Google Scholar 

  25. Gummidi, S.R.B., Xie, X., Pedersen, T.B.: A survey of spatial crowdsourcing. ACM Trans. Database Syst. 44(2), 1–46 (2019)

    Article  MathSciNet  Google Scholar 

  26. Höhn, W., Mestre, J., Wiese, A.: How unsplittable-flow-covering helps scheduling with job-dependent cost functions. Algorithmica (2018)

    Google Scholar 

  27. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within \(2-\varepsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  Google Scholar 

  28. Kolliopoulos, S., Young, N.: Approximation algorithms for covering/packing integer programs. J. Comput. Syst. Sci. 71(4), 495–505 (2005)

    Article  MathSciNet  Google Scholar 

  29. Kothari, A., Parkes, D., Suri, S.: Approximately-strategyproof and tractable multiunit auctions. Decis. Support Syst. 39(1), 105–121 (2005)

    Article  Google Scholar 

  30. Koufogiannakis, C., Young, N.: Greedy \(\delta \)-approximation algorithm for covering with arbitrary constraints and submodular cost. Algorithmica (2013)

    Google Scholar 

  31. Lehmann, D., O’Callaghan, L.I., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. J. ACM 49(5), 577–602 (2002)

    Article  MathSciNet  Google Scholar 

  32. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  33. Mondal, S.: Improved algorithm for resource allocation problems. Asia-Pac. J. Oper. Res. 35(01), 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  34. Myerson, R.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)

    Article  MathSciNet  Google Scholar 

  35. Papadimitriou, C., Schapira, M., Singer, Y.: On the hardness of being truthful. In: Proceedings of the 49th Foundations of Computer Science, pp. 250–259 (2008)

    Google Scholar 

  36. Phillips, C.A., Uma, R., Wein, J.: Off-line admission control for general scheduling problems. J. Sched. 3(6), 365–381 (2000)

    Article  MathSciNet  Google Scholar 

  37. Pritchard, D., Chakrabarty, D.: Approximability of sparse integer programs. Algorithmica 61(1), 75–93 (2011)

    Article  MathSciNet  Google Scholar 

  38. Rajagopalan, S., Vazirani, V.: Primal-dual RNC approximation algorithms for (multi)-set (multi)-cover and covering integer programs. In: Proceedings of the 34th Foundations of Computer Science (1993)

    Google Scholar 

  39. Tong, Y., Zhou, Z., Zeng, Y., Chen, L., Shahabi, C.: Spatial crowdsourcing: a survey. VLDB J. 29(1), 217–250 (2019). https://doi.org/10.1007/s00778-019-00568-7

    Article  Google Scholar 

  40. Vazirani, V.: Approximation Algorithms. Springer, Cham (2001). https://doi.org/10.1007/978-3-662-04565-7

    Book  MATH  Google Scholar 

  41. Xu, J., Xiang, J., Yang, D.: Incentive mechanisms for time window dependent tasks in mobile crowdsensing. IEEE Trans. Wirel. Commun. 14, 6353–6364 (2015)

    Article  Google Scholar 

  42. Zhang, L., Ren, S., Wu, C., Li, Z.: A truthful incentive mechanism for emergency demand response in colocation data centers. In: Proceedings of the IEEE International Conference on Computer Communications-INFOCOM (2015)

    Google Scholar 

Download references

Acknowledgement

This research was supported by the Hellenic Foundation for Research and Innovation. The first two authors were supported by the “1st Call for HFRI Research Projects to support faculty members and researchers and the procurement of high-cost research equipment” (Project Num. HFRI-FM17-3512) and the third author by the HFRI PhD Fellowship grant (Fellowship Num. 289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Markakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Markakis, E., Papasotiropoulos, G., Tsikiridis, A. (2022). On Improved Interval Cover Mechanisms for Crowdsourcing Markets. In: Kanellopoulos, P., Kyropoulou, M., Voudouris, A. (eds) Algorithmic Game Theory. SAGT 2022. Lecture Notes in Computer Science, vol 13584. Springer, Cham. https://doi.org/10.1007/978-3-031-15714-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15714-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15713-4

  • Online ISBN: 978-3-031-15714-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics