Skip to main content

Understanding and Rewiring Cities

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13389))

Included in the following conference series:

  • 840 Accesses

Abstract

Nowadays, the ever increasing digitization of our societies is producing an unprecedented amount of data about human behavior. At the same time, advances in machine learning and complex systems enable us to build explanatory and/or predictive computational models of human behavior. Interestingly, these data and models can also be used to better understand the factors associated with specific neighborhoods’ outcomes such as vitality, safety perception, crime levels, innovation, segregation, traffic congestion, etc., and to design more efficient policymakers’ interventions. In particular, leveraging census data, mobile phone traces, information from OpenStreetMap, and street view images, we describe a set of studies where we (i) infer how vital and livable a city is; (ii) find urban appearance conditions that magnify and influence urban life; (iii) study the relationship of urban conditions with societal outcomes such as urban crime levels; and (iv) model the impact of pandemic shocks such as COVID-19 and related non-pharmaceutical interventions on human behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://pulse.media.mit.edu.

References

  1. Glaeser, E.L.: Triumph of the City: How Our Greatest Invention Makes Us Richer, Smarter, Greener, Healthier, and Happier. Penguin Press, New York (2011)

    Google Scholar 

  2. Milgram, S.: The experience of living in cities. Science 167, 1461–1468 (1970)

    Article  Google Scholar 

  3. Bettencourt, L.M.A., Lobo, J., Helbing, D., Kühnert, C., West, G.B.: Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. 104(17), 7301–7306 (2007)

    Article  Google Scholar 

  4. Bettencourt, L.M.A., West, G.B.: A unified theory of urban living. Nature 467(7318), 912–913 (2010)

    Article  Google Scholar 

  5. Bettencourt, L.M.A.: The origin of scaling in cities. Science 340(6139), 1438–1441 (2013)

    Article  MathSciNet  Google Scholar 

  6. Schläpfer, M., Bettencourt, L.M.A., Grauwin, S., Raschke, M., Claxton, R., Smoreda, Z., West, G.B., Ratti, C.: The scaling of human interactions with city size. J. R. Soc. Interf. 11, 20130789 (2014)

    Article  Google Scholar 

  7. Boyd, R., Richerson, P.J., Henrich, J.: The cultural niche: why social learning is essential for human adaptation. Proc. Natl. Acad. Sci. 108 (supplement_2), 10918–10925 (2011)

    Google Scholar 

  8. Pan, W., Ghoshal, G., Krumme, C., Cebrian, M., Pentland, A.: Urban characteristics attributable to density-driven tie formation. Nat. Commun. 4, 1961 (2013)

    Article  Google Scholar 

  9. Glaeser, E.L., Kolko, J., Saiz, A.: Consumer city. J. Econ. Geogr. 1, 27–50 (2001)

    Article  Google Scholar 

  10. Florida, R.: The Rise of the Creative Class - Revisited: Revised and Expanded. Basic Books (2014)

    Google Scholar 

  11. Logan, J.R., Stults, B.J., Farley, R.: Segregation of minorities in the metropolis: two decades of change. Demography 41(1), 1–22 (2004)

    Article  Google Scholar 

  12. Goldsmith, W., Blakely, E.: Separate Societies: Poverty and Inequality in US Cities. Temple University Press, Philadelphia (2010)

    Google Scholar 

  13. Cassiers, T., Kesteloot, C.: Socio-spatial inequalities and social cohesion in European cities. Urban Stud. 49(9), 1909–1924 (2012)

    Article  Google Scholar 

  14. Iceland, J., Weinberg, D., Hughes, L.: The residential segregation of detailed Hispanic and Asian groups in the United States: 1980–2010. Demograph. Res. 31, 593–624 (2014)

    Article  Google Scholar 

  15. Florida, R.: The New Urban Crisis: How Our Cities Are Increasing Inequality, Deepening Segregation, and Failing the Middle Class, and What We Can Do About it. Basic Books (2017)

    Google Scholar 

  16. Muster, S., Marcińczak, S., Van Ham, M., Tammaru, T.: Socioeconomic segregation in European capital cities: increasing separation between poor and rich. Urban Geogr. 38(7), 1062–1083 (2017)

    Article  Google Scholar 

  17. Sampson, R.J.: Great American City: Chicago and the Enduring Neighborhood Effect, University of Chicago Press, Chicago (2012)

    Google Scholar 

  18. Lee, Y., Eck, J.E., SooHyun, O., Martinez, N.N.: How concentrated is crime at places? A systematic review from 1970 to 2015. Crime Sci. 6(6), (2017)

    Google Scholar 

  19. Barthelemy, M.: The Structure and Dynamics of Cities: Urban Data Analysis and Theoretical Modeling. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  20. Zheng, Y.: Urban Computing. MIT Press, London (2019)

    Google Scholar 

  21. Zheng, Y., Capra, L., Wolfson, O., Hai, Y.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. 5(3), 1–55- (2014)

    Google Scholar 

  22. Jacobs, J.: The Death and Life of American Cities. Random House, New York (1961)

    Google Scholar 

  23. De Nadai, M., Staiano, J., Larcher, R., Sebe, N., Quercia, D., Lepri, B.: The death and life of great Italian cities: a mobile phone data perspective. In: Proceedings of The 25th International Conference On World Wide Web, pp. 413–423 (2016)

    Google Scholar 

  24. Newman, O.: Defensible Space. Macmillan, New York (1972)

    Google Scholar 

  25. De Nadai, M., et al.: Are safer looking neighborhoods more lively? A multimodal investigation into urban life. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 1127–1135 (2016)

    Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G.E. ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), p. 25 (2012)

    Google Scholar 

  27. De Nadai, M., Xu, Y., Letouzé, E., González, M., Lepri, B.: Socio-economic, built environment, and mobility conditions associated with crime: a study of multiple cities. Sci. Rep. 10, 1–12 (2020)

    Article  Google Scholar 

  28. Sampson, R.J., Byron Groves, W.: Community structure and crime: testing social-disorganization theory. Am. J. Sociol. 94(4), 774–802 (1989)

    Google Scholar 

  29. Sampson, R.J., Raudenbush, S.W., Earl, F.: Neighborhoods and violent crime: a multilevel study of collective efficacy. Science 277(5328), 918–924 (1997)

    Article  Google Scholar 

  30. Lucchini, I., et al.: Living in a pandemic: changes in mobility routines, social activity and adherence to COVID-19 protective measures. Sci. Rep. 11, 1–12 (2021)

    Article  Google Scholar 

  31. Nevill-Manning, C., Witten, I.: Identifying hierarchical structure in sequences: a linear-time algorithm. J. Artif. Intell. Res. 7, 67–82 (1997)

    Article  Google Scholar 

  32. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  33. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)

    Google Scholar 

  34. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CPVR), pp. 5967–5976 (2017)

    Google Scholar 

  35. Ledig, C., et al.: Photo-realistic single image super-resolution using a Generative Adversarial Network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CPVR), pp. 4681–4690 (2017)

    Google Scholar 

  36. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Lepri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lepri, B., Centellegher, S., Nadai, M.D. (2022). Understanding and Rewiring Cities. In: Chiusano, S., Cerquitelli, T., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2022. Lecture Notes in Computer Science, vol 13389. Springer, Cham. https://doi.org/10.1007/978-3-031-15740-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15740-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15739-4

  • Online ISBN: 978-3-031-15740-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics