Skip to main content

Maximum Range-Sum for Dynamically Occurring Objects with Decaying Weights

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13389))

Included in the following conference series:

  • 639 Accesses

Abstract

This work addresses a novel variant of the Maximum Range-Sum (MaxRS) query for settings in which spatial point objects occur dynamically and, upon occurrence, their significance (i.e., weight) decays over time. The objective of the original MaxRS query is to find a location to place (the centroid of) a fixed-size spatial rectangle so that the sum of the weights of the point objects in its interior is maximized. The unique aspect of the problem studied in this paper, which we call DDW-MaxRS (Dynamic and Decaying Weights MaxRS), is that the placement of its solution can vary over time due to the joint impact of the arrival of new objects and the change of the corresponding weights of the existing objects over time. To improve the efficiency of the DDW-MaxRS problem processing, we propose a memory-efficient approximate algorithmic solution that will naturally infuse uncertainty in the answer. We formally analyze the error bounds’ properties and provide experimental results to quantify the effectiveness of the proposed approach.

Research supported by the NSF SWIFT grant 2030249.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Implementation and the datasets used are publicly available at https://github.com/Ashraf-T/DDW-MaxRS.

  2. 2.

    cf. https://github.com/pyproj4/pyproj.

References

  1. Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Range-max queries on uncertain data. J. Comput. Syst. Sci. 94, 118–134 (2018)

    Article  MathSciNet  Google Scholar 

  2. Amagata, D., Hara, T.: Monitoring MaxRS in spatial data streams. In: EDBT, pp. 317–328 (2016)

    Google Scholar 

  3. Boulos, M.N.K., et al.: Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples. Int. J. Health Geograph. 10 (2011)

    Google Scholar 

  4. Chen, Z., Liu, Y., Wong, R.C., Xiong, J., Cheng, X., Chen, P.: Rotating MaxRS queries. Inf. Sci. 305 (2015)

    Google Scholar 

  5. Choi, D.W., Chung, C.W., Tao, Y.: A scalable algorithm for maximizing range sum in spatial databases. Proc. VLDB Endow. 5(11), 1088–1099 (2012)

    Article  Google Scholar 

  6. Choi, D., Chung, C., Tao, Y.: Maximizing range sum in external memory. ACM Trans. Database Syst. 39(3), 21:1–21:44 (2014)

    Google Scholar 

  7. Eldawy, A., Mokbel, M.F.: The era of big spatial data: a survey. Found. Trends Databases 6(3–4), 163–273 (2016)

    Article  Google Scholar 

  8. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  9. Hussain, M.M., Mostafiz, M.I., Mahmud, S.M.F., Trajcevski, G., Ali, M.E.: Conditional MaxRS query for evolving spatial data. Front. Big Data 3, 20 (2020)

    Article  Google Scholar 

  10. Imai, H., Asano, T.: Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. J. Algorithms 4(4), 310–323 (1983)

    Article  MathSciNet  Google Scholar 

  11. Koutsopoulos, I.: Optimal incentive-driven design of participatory sensing systems. In: Proceedings of the IEEE INFOCOM (2013)

    Google Scholar 

  12. Liu, Q., Lian, X., Chen, L.: Probabilistic maximum range-sum queries on spatial database. In: Proceedings of the 27th ACM SIGSPATIAL (2019)

    Google Scholar 

  13. LLC, S.: Home Burglay awareness and prevention (2013). http://www.jsu.edu/police/docs/Schoolsafety.pdf

  14. Mishra, A.: Data science: The key tool cities need to reduce carbon emissions (2020)

    Google Scholar 

  15. Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and minimum object enclosing rectangles and cuboids. Comput. Math. Appl. 29(8), 45–61 (1995)

    Article  MathSciNet  Google Scholar 

  16. Phan, T., Jung, H., Youn, H.Y., Kim, U.: Efficient evaluation of maximizing range sum queries in a road network. IEICE Trans. Inf. Syst. 99-D(5), 1326–1336 (2016)

    Google Scholar 

  17. Prieto Curiel, R., Collignon Delmar, S., Bishop, S.R.: Measuring the distribution of crime and its concentration. J. Quant. Criminol. 34 (2018)

    Google Scholar 

  18. Silva, T.H., et al.: Urban computing leveraging location-based social network data: a survey. ACM Comput. Surv. 52(1), 17:1–17:39 (2019)

    Google Scholar 

  19. Singru, N., Lumain, R., Roldan, C.: Reducing Carbon Emissions from Transport Projects - ADB Strategy 2020 (2010)

    Google Scholar 

  20. Siow, E., Tiropanis, T., Hall, W.: Analytics for the internet of things: a survey. ACM Comput. Surv. 51(4), 74:1–74:36 (2018)

    Google Scholar 

  21. Subramanian, R., He, Q., Pascual, M.: Quantifying asymptomatic infection and transmission of COVID-19 in New York city using observed cases, serology, and testing capacity. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 118 (2021)

    Google Scholar 

  22. Tao, Y., Hu, X., Choi, D.W., Chung, C.W.: Approximate MaxRS in spatial databases. In: 39th International Conference on Very Large Data Bases 2013, VLDB 2013. vol. 6, pp. 1546–1557 (2013)

    Google Scholar 

  23. Wan, L., Ng, W.K., Dang, X.H., Yu, P.S., Zhang, K.: Density-based clustering of data streams at multiple resolutions. ACM Trans. Knowl. Discov. Data (TKDD) 3(3), 1–28 (2009)

    Article  Google Scholar 

  24. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNS. IEEE Trans. Syst. Man Cybern. Syst. 45(1), 129–142 (2015)

    Article  Google Scholar 

  25. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: Proceedings of the 2003 ACM SIGMOD, pp. 443–454. ACM (2003)

    Google Scholar 

  26. Zhou, X., Wang, W., Xu, J.: General purpose index-based method for efficient MaxRS query. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9827, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44403-1_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Tahmasbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tahmasbi, A., Trajcevski, G. (2022). Maximum Range-Sum for Dynamically Occurring Objects with Decaying Weights. In: Chiusano, S., Cerquitelli, T., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2022. Lecture Notes in Computer Science, vol 13389. Springer, Cham. https://doi.org/10.1007/978-3-031-15740-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15740-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15739-4

  • Online ISBN: 978-3-031-15740-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics