Skip to main content

Public Randomness Extraction with Ephemeral Roles and Worst-Case Corruptions

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2022 (CRYPTO 2022)

Abstract

We distill a simple information-theoretic model for randomness extraction motivated by the task of generating publicly verifiable randomness in blockchain settings and which is closely related to You-Only-Speak-Once (YOSO) protocols (CRYPTO 2021). With the goal of avoiding denial-of-service attacks, parties speak only once and in sequence by broadcasting a public value and forwarding secret values to future parties. Additionally, an unbounded adversary can corrupt any chosen subset of at most t parties. In contrast, existing YOSO protocols only handle random corruptions. As a notable example, considering worst-case corruptions allows us to reduce trust in the role assignment mechanism, which is assumed to be perfectly random in YOSO.

We study the maximum corruption threshold t which allows for unconditional randomness extraction in our model:

  • With respect to feasibility, we give protocols for t corruptions and \(n=6t+1\) or \(n=5t\) parties depending on whether the adversary learns secret values forwarded to corrupted parties immediately once they are sent or only once the corrupted party is executed, respectively. Both settings are motivated by practical implementations of secret value forwarding. To design such protocols, we go beyond the committee-based approach that is sufficient for random corruptions in YOSO but turns out to be sub-optimal for chosen corruptions.

  • To complement our protocols, we show that low-error randomness extraction is impossible with corruption threshold t and \(n\le 4t\) parties in both settings above. This also provides a separation between chosen and random corruptions, since the latter allows for randomness extraction with close to n/2 random corruptions.

M. Obremski—The author ordering is randomized. A certificate of the randomization procedure can be found here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, D., Obremski, M., Ribeiro, J., Siniscalchi, L., Visconti, I.: How to extract useful randomness from unreliable sources. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 343–372. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_13

    Chapter  Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988). https://doi.org/10.1145/62212.62213

  3. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 260–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_10

    Chapter  Google Scholar 

  4. Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. CoRR abs/1605.04559 (2016). http://arxiv.org/abs/1605.04559

  5. Campanelli, M., David, B., Khoshakhlagh, H., Kristensen, A.K., Nielsen, J.B.: Encryption to the future: a paradigm for sending secret messages to future (anonymous) committees. IACR Cryptology ePrint Archive (2021). https://eprint.iacr.org/2021/1423

  6. Canetti, R., Vald, M.: Universally composable security with local adversaries. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 281–301. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_16

    Chapter  MATH  Google Scholar 

  7. Cascudo, I., David, B.: ALBATROSS: publicly AttestabLe BATched randomness based on secret sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III. LNCS, vol. 12493, pp. 311–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_11

    Chapter  Google Scholar 

  8. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM (1988). https://doi.org/10.1145/62212.62214

  9. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: secure multiparty computation with dynamic participants. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 94–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_4

    Chapter  Google Scholar 

  10. Das, S., Krishnan, V., Isaac, I., Ren, L.: SPURT: scalable distributed randomness beacon with transparent setup. In: 2022 IEEE Symposium on Security and Privacy (SP), Los Alamitos, CA, USA, pp. 1380–1395. IEEE Computer Society, May 2022. https://doi.org/10.1109/SP46214.2022.00080

  11. Gentry, C., et al.: YOSO: you only speak once. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_3

    Chapter  Google Scholar 

  12. Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-index PIR and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol. 13044, pp. 32–61. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_2

    Chapter  Google Scholar 

  13. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_27

    Chapter  Google Scholar 

  14. Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000). https://doi.org/10.1007/s001459910003

    Article  MathSciNet  MATH  Google Scholar 

  15. Maurer, U.: Secure multi-party computation made simple. Discrete Appl. Math. 154(2), 370–381 (2006). https://doi.org/10.1016/j.dam.2005.03.020

    Article  MathSciNet  MATH  Google Scholar 

  16. Micali, S.: ALGORAND: the efficient and democratic ledger. CoRR abs/1607.01341 (2016). http://arxiv.org/abs/1607.01341

  17. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from slightly-random sources (extended abstract). In: 25th Annual Symposium on Foundations of Computer Science, pp. 434–440. IEEE Computer Society (1984). https://doi.org/10.1109/SFCS.1984.715945

Download references

Acknowledgments

JBN was partially funded by The Concordium Foundation; The Danish Independent Research Council under Grant-ID DFF-8021-00366B (BETHE); The Carlsberg Foundation under the Semper Ardens Research Project CF18-112 (BCM). JR was supported in part by the NSF grants CCF-1814603 and CCF-2107347 and by the following grants of Vipul Goyal: the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab seed funding award. MO was supported by MOE2019-T2-1-145 Foundations of quantum-safe cryptography.

JR thanks Chen-Da Liu Zhang, Elisaweta Masserova, and Justin Raizes for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nielsen, J.B., Ribeiro, J., Obremski, M. (2022). Public Randomness Extraction with Ephemeral Roles and Worst-Case Corruptions. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13507. Springer, Cham. https://doi.org/10.1007/978-3-031-15802-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15802-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15801-8

  • Online ISBN: 978-3-031-15802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics