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Abstract

Pseudorandom states, introduced by Ji, Liu and Song (Crypto’18), are efficiently-computable
quantum states that are computationally indistinguishable from Haar-random states. One-way
functions imply the existence of pseudorandom states, but Kretschmer (TQC’20) recently con-
structed an oracle relative to which there are no one-way functions but pseudorandom states still
exist. Motivated by this, we study the intriguing possibility of basing interesting cryptographic
tasks on pseudorandom states.

We construct, assuming the existence of pseudorandom state generators that map a 𝜆-bit
seed to a 𝜔(log 𝜆)-qubit state, (a) statistically binding and computationally hiding commitments
and (b) pseudo one-time encryption schemes. A consequence of (a) is that pseudorandom states
are sufficient to construct maliciously secure multiparty computation protocols in the dishonest
majority setting.

Our constructions are derived via a new notion called pseudorandom function-like states
(PRFS), a generalization of pseudorandom states that parallels the classical notion of pseudo-
random functions. Beyond the above two applications, we believe our notion can effectively
replace pseudorandom functions in many other cryptographic applications.
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1 Introduction

Assumptions are the bedrock of designing provably secure cryptographic constructions. Over the
years, theoretical cryptographers have pondered over the precise assumptions needed to achieve
cryptographic tasks, often losing sleep over this [Kil88]. The celebrated work of Goldreich [Gol90]
shows that most interesting cryptographic tasks (encryption, commitments, pseudorandom genera-
tors, etc.) imply the existence of one-way functions, i.e., functions that can be efficiently computed
in the forward direction but cannot be efficiently inverted. Thus it appears that the existence of
one-way functions is a minimal and necessary assumption in cryptography.

Quantum information processing presents new opportunities for cryptography. Specifically, in
many contexts the assumptions necessary for cryptographic tasks can be weakened with the help of
quantum resources. To illustrate, the seminal work of Bennett and Brassard [BB84] showed that key
exchange can be achieved unconditionally (i.e. without any computational assumptions) using quan-
tum communication. In contrast, key exchange is known to require computational assumptions if
the parties are restricted to classical communication. More recently, the work of Bartusek, Coladan-
gelo, Khurana, and Ma [BCKM21b] and that of Grilo, Lin, Song and Vaikuntanathan [GLSV21]
demonstrate that quantum protocols for secure multiparty computation can be constructed from
post-quantum one-way functions. On the other hand classical protocols for secure computation
cannot be based (in a black-box fashion) on one-way functions alone [IR89].

These examples suggest that we revisit our belief about the necessity of certain cryptographic
assumptions for quantum cryptographic tasks (tasks that make use of quantum computation and/or
quantum communication). Specifically, it is not even clear whether one-way functions are even
necessary in the quantum setting — Goldreich’s result [Gol90] only applies to classical cryptographic
primitives and protocols.

Our work continues the research agenda carried out by our predecessors [Wie83, BB84, BBCS91,
GLSV21, BCKM21b]: can we achieve cryptographic tasks using quantum communication in a world
without one-way functions1?

Pseudorandom Quantum States. Motivated by the question above, we turn to the notion of
pseudorandom quantum states (abbreviated PRS) introduced by Ji, Liu and Song [JLS18]. A PRS
generator 𝐺 is a quantum polynomial-time (QPT) algorithm that, given input a 𝜆-bit key, outputs
an 𝑛-qubit quantum state with the guarantee that it is computationally indistinguishable from an
𝑛-qubit Haar random state (i.e. the uniform distribution over 𝑛-qubit pure states), even with many
copies. Ji, Liu and Song (and subsequently improved by Brakerski and Shmueli [BS19, BS20]) show
the existence of PRS assuming post-quantum one-way functions.

This notion is analogous to pseudorandom generators (PRGs) from classical cryptography which
take as input a random seed of length 𝜆, and deterministically outputs a larger string of length
𝑛 > 𝜆 that is computationally indistinguishable from a string sampled from the uniform distribu-
tion. Despite the analogy, it has not been obvious whether pseudorandom quantum states have
much cryptographic utility outside of quantum money [JLS18] (unlike PRGs, which are ubiquitous
in cryptography). Understanding the consequences of pseudorandom quantum states is particularly
important in light of a recent result by Kretschmer [Kre21], who showed that there is a relativized
world where 𝐵𝑄𝑃 = 𝑄𝑀𝐴 (and thus post-quantum one-way functions do not exist) while pseudo-

1Both the works [GLSV21, BCKM21b] explicitly raised the question of basing secure computation on assumptions
weaker than one-way functions.
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random states exist. Kretschmer’s result motivates us to focus the aforementioned research agenda
on the following question: what cryptographic tasks can be based solely on pseudorandom quantum
states?

1.1 Our Results

Our contributions in a nutshell are as follows:

• We propose a new notion called pseudorandom function-like quantum states (PRFS).

• Using PRFS, we show how to build (a) statistically binding commitments and (b) pseudo one-
time encryption schemes. As a consequence of (a), we obtain maliciously secure computation
in the dishonest majority setting.

• Finally, we show that for a certain range of parameters – the same as what is needed for the
above applications – we can construct PRFS from a PRS.

Before we present the definition of PRFS, we first highlight the need for defining a new notion by
describing the challenges for constructing primitives directly from PRS.

1.1.1 Challenges for Basing Primitives On PRS

Although the closest classical analogue of a PRS generator is a PRG, the analogy breaks down in
several critical ways. This makes it challenging to use PRS generators in the same way that PRGs
are used throughout cryptography.

Specifically, PRS generators appear very rigid, meaning that it seems challenging to take an
existing PRS generator and generically increase or decrease its output length. Moreover, it is
difficult to use output qubits of a PRS generator independently.

Inability to Stretch the Output. A fundamental result about PRGs is that their stretch (the
output length as a function of the key length) can be amplified arbitrarily. In other words, given
a PRG 𝐺 that maps 𝜆 random bits to at least (𝜆 + 1) pseudorandom bits, one can construct a
PRG with any polynomial output length. This fact is implicitly used everywhere in cryptography;
specifically, it gives us the flexibility to choose the appropriate stretch of PRG relevant for the
application without having to worry about the underlying hardness assumptions.

If PRS generators are analogous to PRGs, then one would expect that a similar amplification
result to hold: the existence of PRS with nontrivial output length would (hopefully) imply the
existence of PRS with arbitrarily large output length. The natural approach to amplify the stretch
of a PRG by iteratively composing it with itself does not immediately work with PRS for a number
of reasons; for one, a PRS generator takes as input a classical key while its output is a quantum
state!

Inability to Shrink the Output. To add insult to injury, it is not even obvious how to shrink
the output length of a PRS generator; this was also observed by Brakerski and Shmueli [BB21].
Classically, one can always discard bits from the output of a PRG, and the result is still obviously a
PRG. However, discarding a single qubit of an 𝑛-qubit pseudorandom state will leave a mixed state
that is easily distinguishable from an (𝑛− 1)-qubit Haar-random state.
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Inability to Separate the Output. Since the PRS output is highly entangled, it seems difficult
to use the individual output qubits. As an example, suppose we want to encrypt a message of
length ℓ. In the classical setting, an ℓ-bit output PRG can be used to encrypt a message of length
ℓ by xor-ing the 𝑖𝑡 PRG output bit with the 𝑖𝑡 bit of the message. Implicitly, we are using the
fact that the output of a PRG can be viewed a tensor product of bits and this feature of classical
PRGs is mirrored by our notion of PRFS (explained next). On the other hand, if we have a single
(entangled) PRS state (irrespective of the number of qubits it represents), it is unclear how to use
each qubit to encode a bit; any operations performed on a single qubit could affect the other qubits
that are entangled with this qubit.

1.1.2 New Notion: Pseudorandom Function-Like States

Pseudorandom function-like states (abbreviated PRFS) is a generalization of PRS, where the same
key 𝑘 can be used to generate many pseudorandom states. In more details, a (𝑑, 𝑛)-PRFS generator
𝐺 is a QPT algorithm that, given as input a key 𝑘 ∈ {0, 1}𝜆 and an input 𝑥 ∈ {0, 1}𝑑, outputs
a 𝑛-qubit quantum state |𝜓𝑘,𝑥⟩, satisfying the following pseudorandomness property: no efficient
adversaries can distinguish between multiple copies of the output states (|𝜓𝑘,𝑥1⟩ , . . . , |𝜓𝑘,𝑥𝑠⟩) from
a collection of states (|𝜗1⟩ , . . . , |𝜗𝑠⟩) where each |𝜗𝑖⟩ is sampled independently from the Haar dis-
tribution; furthermore, the indistinguishability holds even if the inputs 𝑥1, . . . , 𝑥𝑠 are chosen by the
adversary. This is formalized in Definition 3.3.

An Alternate Perspective: Tensor Product PRS generators. If PRS generators are analo-
gous to classical pseudorandom generators, then PRFS generators are analogous to classical pseudo-
random functions (hence the name pseudorandom function-like). A PRS generator outputs a single
state per key 𝑘. On the other hand, we can think of PRFS as a relaxed notion of PRS generator
that on input 𝑘 outputs a tensor product of states |𝜓0⟩ ⊗ |𝜓1⟩ ⊗ · · · ⊗ |𝜓2𝑑−1⟩ where each |𝜓𝑖⟩, is
indistinguishable from a Haar-random state.

The tensor product feature is quite useful in applications, as we will see shortly.

Additional Observations. Some additional observations of PRFS are in order:

• Assuming one-way functions, we can generically construct (𝑑, 𝑛)-PRFS from any 𝑛-qubit PRS
for any polynomial 𝑑, 𝑛. To compute PRFS on key 𝑘 and input 𝑥, first compute a classical
PRF on (𝑘, 𝑥) and use the resulting output as a key for the 𝑛-qubit PRS. Since 𝑛-qubit PRS
can be based on (post-quantum) one-way functions [JLS18, BS20], this shows that even PRFS
can be based on (post-quantum) one-way functions.

• In the other direction, we can construct 𝑛-qubit PRS from any (𝑑, 𝑛)-qubit PRFS. On input
𝑘, the PRS simply outputs the result of PRFS on input (𝑘, 0).

• Another interesting aspect about PRFS is that it too, like PRS, is separated from (post-
quantum) one-way functions. This can be obtained by a generalization of Kretschmer’s re-
sult [AQY22].

1.1.3 Implications

We show that PRFS can effectively replace the usage of pseudorandom generators and pseudoran-
dom functions in many primitives one learns about in “Cryptography 101”. Specifically, we focus
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on two applications of PRFS generators. Later we will show that in fact that we can achieve these
two applications from PRS generators only.

Implication 1. One-time Encryption with Short Keys and Long Messages. As a starter
illustration of the usefulness of PRFS, we construct from a PRFS generator 𝐺 a one-time encryption
scheme for classical messages. The important feature of this construction is the fact that the message
length is much larger than the key length. This is impossible to achieve information-theoretically,
even in the quantum setting. This type of one-time encryption schemes, also referred to as pseudo
one-time pad, is already quite useful, as it implies garbling schemes for P/poly [BMR90] and even
garbling for quantum circuits [BY20].

Theorem 1.1 (Informal; Pseudo One-time Pad). Assuming the existence of (𝑑, 𝑛)-PRFS with2

𝑑 = 𝑂(log 𝜆) and 𝑛 = 𝜔(log 𝜆), there exists a one-time encryption scheme for messages of length
ℓ = 2𝑑.

We emphasize that in the implication to one-time encryption, we only require PRFS with
logarithmic-length inputs.

The construction is simple and a direct adaptation of the construction of one-time encryp-
tion from pseudorandom generators. To encrypt a message 𝑥 of length ℓ ≫ 𝜆, output the state
𝐺(𝑘, (1, 𝑥𝑖)) ⊗ · · · ⊗ 𝐺(𝑘, (ℓ, 𝑥ℓ)), where 𝑘 ∈ {0, 1}𝜆 is the symmetric key shared by the encryptor
and the decryptor. The decryptor using the secret key 𝑘 can decode3 the message 𝑥. The security
of the encryption scheme follows from the pseudorandomness of PRFS.

Implication 2. Statistically binding commitment schemes. We focus on designing commit-
ment schemes with statistical binding and computational hiding properties. In the classical setting,
this notion of commitment schemes can be constructed from any length-tripling PRG [Nao91]. Re-
cently, two independent works [GLSV21, BCKM21b] showed that commitment schemes with afore-
mentioned properties imply maliciously secure multiparty computation protocols with quantum
communication in the dishonest majority setting. Of particular interest is the work of [BCKM21b]
who construct the multiparty computation protocol using the commitment scheme as a black box.
In particular, their construction works even when the commitment scheme uses quantum commu-
nication. They then instantiate the underlying commitment scheme from post-quantum one-way
functions.

We design commitment schemes based on PRFS instead of one-way functions. First, we present
a new definition of the statistical binding property for commitment schemes that utilize quantum
communication. The notion of binding for quantum commitment schemes is more subtle than
that for classical commitment schemes and has been extensively studied in prior works [YWLQ15,
Unr16, FUYZ20, BCKM21b, BB21]. Our definition generalizes all previously known definitions of
statistical binding for quantum commitments, and suffice for applications such as secure multiparty
computation. (Our definition is formally presented in Definition 6.1).

Then we show, assuming the existence of PRFS with certain parameters, the existence of quan-
tum commitment schemes satisfying our definition.

2Recall that 𝜆 is the key length.
3In the technical sections, we define a QPT algorithm 𝖳𝖾𝗌𝗍 that given a state 𝜌 along with 𝑘, 𝑥, determines if 𝜌 is

equal to the output 𝐺(𝑘, 𝑥). We show the existence of such a test algorithm for any PRFS.
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Theorem 1.2 (Informal). Assuming the existence of (𝑑, 𝑛)-PRFS4 where 2𝑑 · 𝑛 ≥ 7𝜆, there exists
a statistically binding and computationally hiding commitment scheme.

By plugging our commitment scheme into the framework of [BCKM21b], we obtain the following
corollary.

Corollary 1.3 (Informal). Assumuing the existence of (𝑑, 𝑛)-PRFS with 2𝑑 · 𝑛 ≥ 7𝜆, there exists a
maliciously secure multiparty computation protocol in the dishonest majority setting.

Our construction is an adaptation of Naor’s commitment scheme [Nao91]. We replace the use
of the PRG in Naor’s construction with a PRFS generator and the first message, which is a random
string in Naor’s construction, instead specifies a random Pauli operator.

Other Implications. Besides the above applications, we show that PRFS (with polynomially-
long input length) can also be used to construct other fundamental primitives such as symmetric-key
CPA-secure encryption (see Section 7.1) and message authentication codes (see Section 7.2). Both
primitives guarantee security in the setting when the secret key can be reused multiple times.

Unlike the previous applications (pseudo QOTP and commitments), the straightforward con-
structions of reusable encryption and MACs require PRFS generators with input lengths 𝜔(log 𝜆)
and ℓ respectively, where ℓ is the length of the message being authenticated. We do not know if
such PRFS generators can be constructed from PRS generators in a black box way. Nonetheless,
we believe these applications illustrate the usefulness of the concept of PRFS generators.

1.1.4 Construction of PRFS

Given the interesting implications of PRFS, the next natural step is to focus on constructing PRFS
generators. We show that for some interesting range of parameters, we can achieve PRFS from any
PRS. In particular, we show the following.

Theorem 1.4 (Informal). For 𝑑 = 𝑂(log 𝜆) and 𝑛 = 𝑑+ 𝜔(log log 𝜆), assuming the existence of a
(𝑑+ 𝑛)-qubit PRS generator, there exists a (𝑑, 𝑛)-PRFS generator.

A surprising aspect about the above result is that the starting PRS’s output length 𝑑 + 𝑛 =
𝜔(log log 𝜆) could even be much smaller than the key length 𝜆. In contrast, classical pseudorandom
generators with output length less than the input length are trivial.

We remark that if 𝑑 ≪ log 𝜆 then it is easy to build PRFS from PRS; chop up the key 𝑘 into
2𝑑 blocks; to compute the PRFS generator with key 𝑘 and input 𝑥, compute the PRS generator on
the 𝑥𝑡 block of the key. Unfortunately, PRFS with this range of parameters does not appear useful
for applications because the seed length is too large. On the other hand, the construction of PRFS
generators from PRS generators in Theorem 1.4 allows for 2𝑑 to be an arbitrarily large polynomial
in the key length. Note that this is sufficient for Theorem 1.1 and Corollary 1.3. We thus obtain
the following corollary.

Corollary 1.5. Assuming (2 log 𝜆+𝜔(log log 𝜆))-qubit PRS, there exist statistically binding commit-
ment schemes and therefore secure computations. Assuming 𝜔(log 𝜆)-qubit PRS, there exist pseudo
one-time pad schemes for messages of any polynomial length.

4To simplify the analysis, there is an additional technical property of the PRFS not mentioned here that is required
by our construction, called recognizable abort (Definition 3.5). All known constructions of PRFS and PRS (including
ours) have the recognizable abort property.
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We remark that the assumptions of Corollary 1.5 on the PRS generators are essentially optimal,
in the sense that it is not possible to significantly weaken them. This is because commitment
and pseudo one-time pad schemes require computational assumptions on the adversary; on other
hand Brakerski and Shmueli [BS20] demonstrate the existence a “pseudo”-random state generator
with output length 𝑐 log 𝜆 for some constant 𝑐 < 1 that is statistically secure: in other words, the
outputs of the generator are indistinguishable from Haar-random states by any distinguisher (not
just polynomial-time ones).

Furthermore, it can be shown that PRS generators with log 𝜆-qubit outputs require computa-
tional assumptions on the adversary and that generators with (1+𝜀) log 𝜆-qubit outputs imply BQP
̸= PP [AQY22].

Concurrent Work

A concurrent preprint of Morimae and Yamakawa [MY21] also construct statistically binding and
computationally hiding commitment schemes from PRS, adapting Naor’s commitment scheme in a
manner similar to ours. We note several differences between their work and ours, with regards to
commitment schemes.

1. They show a weaker notion of binding known as sum-binding, which roughly says that the
sum of the probabilities that an adversarial committer can successfully decommit to the bit 0
and the bit 1 is at most a quantity negligibly close to 1. This notion of binding is not known
to be sufficient for general quantum commitment protocols to conclude that PRS implies
protocols for secure computation5. However, our notion of statistical binding (Definition 6.1)
is sufficient for leveraging the machinery of [BCKM21b] to obtain quantum protocols for
secure computation. Moreover, our definition of statistical binding implies the sum-binding
definition6.

2. For the same level of statistical binding security, that is 𝑂(2−𝜆), they require the existence of
a PRS that stretches 𝜆 random bits to 3𝜆 qubits of Haar-randomness (i.e., they require the
PRS generator to have stretch), whereas our result assumes the existence of a PRS that maps
𝜆 bits to 2 log 𝜆 + 𝜔(log log 𝜆) qubits. On the other hand, they require the pseudorandom-
ness/indistinguishability of a single copy of PRS state versus Haar random, while we require
the pseudorandomness to hold again multiple copies, especially when the output length is
short.

3. The state generation guarantee required from the underlying PRS is much stricter in their
setting. In our work, we require the underlying PRS to only satisfy recognizable abort (Def-
inition 3.5) whereas in their work, the underlying PRS needs to satisfy a guarantee that is
even stronger than perfect state generation (Definition 3.4).

4. Their commitment scheme is non-interactive whereas our commitment scheme is a two-message
scheme. Furthermore, our protocol has a classical opening message while theirs is quantum.

5However, in an updated draft of [MY21], the authors sketch how, for a special form of quantum commitment
schemes, sum-binding does imply our notion of statistical binding.

6The sum of probabilities that an adversarial decommitter can decommit to 0 and to 1 in the ideal world of our
definition (Definition 6.1) and therefore they sum up to at most negligibly larger than 1 in the real world by our
statistical binding guarantee.
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However, these differences are rather minor since we can easily adapt our construction to
satisfy these requirements, and vice versa.

We also note that the notion of PRFS, its implications and its construction from PRS is unique to
our work.

1.2 Discussion: Why Explore a World Without One-Way Functions?

Before getting into the technical overview we address a common question: “Sure, it is interesting
that one can construct commitment schemes and pseudo one-time pad schemes without one-way
functions, but will this still matter if someone proves that (post-quantum) one-way functions exist?”

Our view is the following: it is not our goal to avoid one-way functions because we don’t
believe that they exist7. The main motivation is to gain a deeper understanding of fundamental
cryptographic primitives such as encryption and commitment schemes. As mentioned previously, it
has been understood for many decades that these primitives are inseparable from one-way functions
(even in a black box way) in the classical setting. We view our results as revising this understanding
in the quantum world: one-way functions are not necessary for these primitives.

Another motivation comes from complexity theory. An oft-repeated storyline is that if P = NP,
then one-way functions would not exist and thus most cryptography would be impossible; this sce-
nario has been coined by Impagliazzo as Algorithmica as one of his five “complexity worlds” [Imp95].
While most people believe that P ̸= NP, it is nonetheless scientifically interesting to study the con-
sequences of other complexity-theoretic outcomes. Our work adds a twist to the usual P = NP
storyline: perhaps QAlgorithmica – Impagliazzo’s Algorithmica plus quantum information – can
potentially support both an algorithmic and cryptographic paradise.

Finally, we believe that studying the possibilities of basing cryptography solely on quantum
assumptions is extremely useful for deepening our understanding of quantum information. By
restricting ourselves to not use one-way functions, we force ourselves to use the unique properties of
quantum mechanics to the hilt. For example, our constructions of PRFS generators, pseudo one-time
pad and commitment schemes ultimately required us to make use of properties of pseudorandom
states such as concentration of measure over the Haar distribution.

Another question that often arises is: “Is there a candidate construction of PRS generators
that do not (obviously) involve one-way functions?” While Kretschmer [Kre21] showed an oracle
separation between pseudorandom states and one-way functions, this is an artificial setting where
the oracle is constructed by sampling a Haar-random unitary.

We claim that random quantum circuits form natural constructions of pseudorandom states: the
generator 𝐺 interprets the key 𝑘 as a description of a quantum circuit on 𝑛 qubits, and 𝐺 outputs
the state 𝑘 |0𝑛⟩ (i.e. executes the circuit with the all zeroes input). It has been conjectured in
a number of settings that random quantum circuits have excellent pseudorandom properties. For
example, the quantum supremacy experiments of Google [AAB+19] and UTSC [ZCC+22] are based
on the premise that random 𝑛-qubit circuits of sufficiently large depth should generate states that
are essentially Haar-random [HM18]. Random quantum circuits have also been extensively studied
as toy models of scrambling in black hole dynamics [BF13, BFV20, BCH+21].

It seems beyond the reach of present-day techniques to prove that polynomial-size random
quantum circuits yield pseudorandom states; for one, doing so would separate BQP from PP [Kre21],

7The majority of the authors of this paper believe one-way functions exist.
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which would be an incredible result in complexity theory. However, this is a plausible candidate
PRS generator, and arguably this construction does not involve one-way functions at all.

1.3 Technical Overview

We first describe the techniques behind the construction of pseudorandom function-like states from
pseudorandom quantum states. Then, we will give an overview of the result of statistical binding
commitments from PRFS.

1.3.1 PRFS from PRS

To construct a (𝑑, 𝑛)-PRFS, we start with an (𝑛 + 𝑑)-qubit PRS. For the purposes of the current
discussion, we will assume that PRS has perfect state generation. That is, the output of PRS is a
pure state.

Main Insight: Post-Selection. The construction proceeds as follows: on input key 𝑘 and 𝑥 ∈
{0, 1}𝑑, first generate a (𝑑 + 𝑛)-qubit PRS state by treating 𝑘 as the PRS seed. As the PRS
satisfies perfect state generation, the output is a pure state and we can write the state as |𝜓⟩ =∑︀

𝑥∈{0,1}𝑑 𝛼𝑥 |𝑥⟩ ⊗ |𝜓𝑥⟩, where |𝜓𝑥⟩ is a 𝑛-qubit state. Suppose we post-select (i.e., condition) on
the first 𝑑 qubits being in the state |𝑥⟩, the remaining 𝑛 qubits will be in the state |𝜓𝑥⟩, which we
define to be the output of the PRFS on input (𝑘, 𝑥).

In general, we do not know how to perform post-selection in polynomial-time [Aar05]. However,
if the event on which we are post-selecting has an inverse polynomial (where the polynomial is known
ahead of time) probability of occurring, then we can efficiently perform post-selection. That is, we
repeat the following process 2𝑑𝜆 number of times: generate |𝜓⟩ by computing the PRS generator
on 𝑘 and then measure the first 𝑑 qubits in the computational basis. If the first 𝑑 qubits is 𝑥 then
output the residual state (which is |𝜓𝑥⟩), otherwise continue. If in none of the 2𝑑𝜆 iterations, we
obtained the first 𝑑 qubits to be 𝑥, we declare failure and output some fixed state |⊥⟩.

We prove that the above PRFS generator satisfies pseudorandomness by making two observa-
tions.

Observation 1: Output of PRFS is close to |𝜓𝑥⟩. We need to argue that the probability that the
PRFS generator outputs |𝜓𝑥⟩ is negligibly (in 𝜆) close to 1. This boils down to showing that with
probability negligibly close to 1, in one of the iterations, the measurement outcome will be 𝑥. Indeed
if |𝛼𝑥|2 is roughly 1

2𝑑
then this statement is true. But it is a priori not clear how to argue this.

Towards resolving this issue, let us first pretend that |𝜓⟩ was instead drawn from the Haar
measure. In this case, we can rely upon Lévy’s Lemma (Fact 2.2) to argue that |𝛼𝑥|2 is indeed close
to 1

2𝑑
, with overwhelming probability over the Haar measure. Thus, if |𝜓⟩ was drawn from the Haar

measure, the probability that the PRFS generator outputs |𝜓𝑥⟩ is negligibly close to 1.
Now, let us go back to the case when |𝜓⟩ was a PRS state. Since the PRFS generator is a

quantum polynomial-time algorithm, it cannot distinguish whether |𝜓⟩ was generated by PRS or
whether it was sampled from the Haar measure. This means that the probability that it outputs
|𝜓𝑥⟩, when |𝜓⟩ was a PRS state, should also be negligibly close to 1.

While ideally we would have liked the PRFS to have perfect state generation, the above con-
struction still satisfies a nice property that we call recognizable abort: the output of the PRFS is
either a pure state or it is some known pure state |⊥⟩.
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All is left is to show that the post-selected state |𝜓𝑥⟩ is Haar random when |𝜓⟩ is Haar random.

Observation 2: Post-selected Haar random state is also Haar random. Haar random states satisfy
a property called unitary invariance: applying any unitary on a Haar random state yields a Haar
random state. Consider the following distribution ℛ of unitaries: 𝑅 =

∑︀
𝑥∈{0,1}𝑛 |𝑥⟩ ⟨𝑥| ⊗ 𝑅𝑥,

where 𝑅𝑥 is a Haar random unitary. Now, applying 𝑅, where 𝑅 ← ℛ, on a Haar random state
|𝜓⟩ =

∑︀
𝑥∈{0,1}𝑑 |𝑥⟩ ⊗ |𝜓𝑥⟩ yields a Haar random state.

Thus, the following two processes yield the same distribution:

• Process 1: Sample |𝜓⟩ =
∑︀

𝑥∈{0,1}𝑑 |𝑥⟩ ⊗ |𝜓𝑥⟩ be a Haar random state. Output |𝜓𝑥⟩.

• Process 2: Sample a Haar random state |𝜓⟩ =
∑︀

𝑥∈{0,1}𝑑 |𝑥⟩ ⊗ |𝜓𝑥⟩. Output 𝑅𝑥 |𝜓𝑥⟩.

Notice that the output distribution of Process 2 is Haar random since 𝑅𝑥 is a Haar random unitary.
From this we can conclude that even the output distribution of Process 1 is also Haar random.

Test Procedure. Classical pseudorandom generators satisfy a verifiability property that we often
take for granted: given a value 𝑦 and a seed 𝑘, we can successfully check if 𝑦 is obtained as
an evaluation of a seed 𝑘. This feature is implicitly used in many applications of pseudorandom
generators. We would like to have a similar feature even for pseudorandom function-like states.
More specifically, we would like the following to hold: given a state 𝜌, a PRFS key 𝑘 and an input
𝑥, check if 𝜌 is close to the output of PRFS on (𝑘, 𝑥).

Let us start with a simple case when the PRFS satisfies perfect state generation property and
moreover, PRFS generator is a unitary 𝐺. We can express PRFS state generation as follows: on
input a key 𝑘, input 𝑥 and ancillas |𝑘⟩⊗|𝑥⟩⊗|0⟩, 𝐺 outputs |𝜓𝑘,𝑥⟩⊗|𝜑⟩. The state |𝜓𝑥⟩ is deisgnated
to be the PRFS state corresponding to input 𝑥 and the state |𝜑⟩ is discarded as the garbage state.

Suppose we need to test if a state 𝜌 is the output of PRFS on 𝑘 and 𝑥. The test procedure is
defined as follows:

• Compute 𝐺(|𝑘⟩ ⊗ |𝑥⟩ ⊗ |0⟩),

• Swap the register containing the PRFS state with 𝜌,

• Apply 𝐺† on the resulting state and,

• Measure the resulting state and output 1 if the outcome is (𝑘, 𝑥, 0). Otherwise, output 0.

Since unitaries preserve fidelity between the states, we can show that the following holds: the
above test procedure outputs 1 with probability proportional to 𝐹 (𝜌, |𝜓𝑘,𝑥⟩⟨𝜓𝑘,𝑥|). More precisely,
the test procedure outputs 1 with probability Tr(|𝜓𝑘,𝑥⟩⟨𝜓𝑘,𝑥| 𝜌).

The above test procedure can be suitably generalized if the PRFS satisfies the (weaker) state
generation with recognizable abort property. If the PRFS generator is a quantum circuit then we
designate 𝐺, in the above test procedure, to be a purification of this quantum circuit.

1.3.2 Statistical Binding Commitments

We show how to construct statistical binding quantum commitments from PRFS.
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Definition. A statistical binding quantum commitment scheme consists of two interactive phases
between a sender and a receiver: a commit phase and a reveal phase. In both the phases, the
communication between the parties can be quantum. In the commit phase, the sender commits to
a bit 𝑏. In the reveal phase, the committer reveals 𝑏 and the receiver either accepts or rejects.

We require that any (even unbounded) sender cannot commit to bit 𝑏 in the commit phase and
then successfully open to 1−𝑏 in the reveal phase. Formalizing this can be tricky in the setting where
the communication channel is quantum. For example, consider the following attack: an adversarial
sender can send a uniform superposition of commitments of 0 and 1 and then open to one of them
in the reveal phase. Any definition we come up should handle this attack.

We propose an extractor-based definition. Consider an adversarial sender 𝑆*. Let us define the
ideal experiment as follows: execute the commit phase with 𝑆*. After the commit phase, apply an
extractor on the receiver’s state. The output of the extractor is a bit 𝑏* along with the collapse
state 𝜎𝑅. Execute the reveal phase; let 𝑏 be the bit opened to by 𝑆*. Output 𝖥𝖺𝗂𝗅 if 𝑏 ̸= 𝑏* and 𝑅
accepts. Otherwise, output 𝑆*’s final state (after the execution of the Reveal phase) along with 𝑅’s
decision, which is either the decommitted bit of the sender or it is ⊥. Similarly, we can define real
experiment as follows: We execute the commit phase and the reveal phase between 𝑆* and 𝑅 and
then output the final state of 𝑆* along with 𝑅’s decision.

Going back to the earlier superposition attack, the extractor would, with equal probability,
collapse to either commitment of 0 or collapse to commitment of 1.

We say that the quantum commitment scheme satisfies statistical binding if the output dis-
tributions of the real and ideal experiments are statistically close. Our definition of statistical
binding generalizes all the previous definitions of statistical binding in the context of quantum
commitments [YWLQ15, Unr16, FUYZ20, BCKM21b, BB21]. Refer to Section 6.1 for a detailed
comparison with prior definitions.

We also require the quantum commitment scheme to satisfy computational hiding: in the commit
phase, any quantum poly-time receiver cannot tell apart whether the sender committed to 0 or 1.

Construction. Our construction is a direct adaptation of Naor’s commitment scheme [Nao91],
i.e. the same protocol but simply replacing PRG with PRFS. We start with a (𝑑, 𝑛)-PRFS, where
𝑑 = 𝑂(log(𝜆)) and 𝑛 ≥ 1.

• In the commit phase, the receiver sends a random 2𝑑𝑛-qubit Pauli 𝑃 = 𝑃0 ⊗ · · ·𝑃2𝑑−1 to
the sender, where each 𝑃𝑖 is a 𝑛-qubit Pauli. The sender on input bit 𝑏, samples a key 𝑘
uniformly at random from {0, 1}𝜆. The sender then sends the state 𝐜 =

⨂︀
𝑥∈[2𝑑] 𝑃

𝑏
𝑖 𝜎𝑘,𝑥𝑃

𝑏
𝑖 ,

where 𝜎𝑘,𝑥 = 𝑃𝑅𝐹𝑆(𝑘, 𝑖) to the receiver.

• In the reveal phase, the sender sends (𝑘, 𝑏) to the receiver. The receiver accepts if 𝑃 𝑏𝐜𝑃 𝑏 is a
tensor product of the PRFS evaluations of (𝑘, 𝑥), for all 𝑥 = 0, . . . , 2𝑑 − 1.

From the pseudorandomness property of PRFS, hiding follows. To prove that the above scheme
satisfies binding, we describe the extractor first. It again helps to think of PRFS as satisfying the per-
fect state generation property. The extractor applies the following projection {Π0,Π1, 𝐼−(Π0+Π1)},
where Π𝑏 projects onto the subspace spanned by 𝑇𝑏 =

{︁⨂︀
𝑥∈{0,1}2𝑑 𝑃

𝑏 |𝜓𝑘,𝑥⟩⟨𝜓𝑘,𝑥|𝑃 𝑏 : ∀𝑘 ∈ {0, 1}𝜆
}︁

,
where |𝜓𝑘,𝑥⟩ is the output of 𝑃𝑅𝐹𝑆(𝑘, 𝑥). If Π𝑏 succeeds then 𝑏 is designated to be the extracted
bit. At the core of proving the indistinguishability of the real and the ideal world is the following
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fact: applying a projector that projects onto 𝑇𝑏 (as done by the extractor), followed by the pro-
jector

⨂︀
𝑥∈{0,1}2𝑑 𝑃

𝑏 |𝜓𝑘,𝑥⟩⟨𝜓𝑘,𝑥|𝑃 𝑏 (as done by the receiver) is the equivalent to only applying the
projector

⨂︀
𝑥∈{0,1}2𝑑 𝑃

𝑏 |𝜓𝑘,𝑥⟩⟨𝜓𝑘,𝑥|𝑃 𝑏.
While our actual proof is conceptually similar to the proof sketched above, there are some crucial

details that we shoved under the rug. Firstly, 𝐼 − (Π0 + Π1) is not necessarily a projection since
the projections Π0 and Π1 need not be orthogonal. Secondly, the PRFS generation is not perfect
and we need to work with recognizable abort property. Nonetheless we circumvent these issues and
show that the above construction still works. We refer the reader to Section 6.2 for more details.

1.4 Future Directions

We end this section with some future directions and open questions.

Properties of pseudorandom states. Given a PRS generator 𝐺 mapping 𝜆-bit keys to 𝑛-qubit
states, is it possible to construct in as black-box fashion as possible, a PRS generator 𝐺′ with longer
output length (but same length key)? In other words, it is possible to arbitrarily stretch the output
of a PRS?

Is it possible to construct PRFS generators (with polynomial-length inputs) from PRS generators
in a black-box fashion? Are there separations?

More applications of pseudorandom states. One of Impagliazzo’s “five worlds” is called
MiniCrypt, which represents a world where one-way functions exist but we do not have public-key
cryptography. In this world, applications such as symmetric-key encryption, commitment schemes,
secure multiparty computation, and digital signatures are possible to achieve.

It appears that we can obtain most MiniCrypt primitives from PR(F)S; for example this paper
shows that we can get symmetric-key encryption, commitments, and secure multiparty computa-
tion. However it is a tantalizing open question of whether we can also build digital signatures
from PR(F)S. Morimae and Yamakawa show that an analogue of one-time Lamport signatures can
be constructed from PRS [MY21], but obtaining many-time signatures from PR(F)S seems more
challenging.

More generally, what are other cryptographic applications of pseudorandom states?

Other quantum assumptions. What are other interesting “fully quantum” assumptions that
can we base cryptography on? Can we base cryptography on the assumption 𝖡𝖰𝖯 ̸= 𝖯𝖯? We
note that Chia, Chou, Zhang, Zhang also suggest the possibility of basing cryptography on the
assumption that a quantum version of the Minimum Circuit Size Problem is hard [CCZZ22, Open
Problem 9].

1.4.1 Organization

We present the definitions of PRS and PRFS generators in Section 3, as well as prove basic prop-
erties of them. We present a construction of PRFS generators from PRS generators in Section 4.
We present our quantum pseudo one-time pad scheme in Section 5. We present our quantum com-
mitment scheme in Section 6. We present our many-time encryption scheme in Section 7.1 and our
message authentication code scheme in Section 7.2.
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2 Preliminaries

We refer the reader to [NC10] for a comprehensive reference on the basics of quantum information
and quantum computation. We use 𝐼 to denote the identity operator. We use 𝒟(ℋ) to denote
the set of density matrices on a Hilbert space ℋ. Let 𝜌, 𝜎 ∈ 𝒟(ℋ) be density matrices. We write
TD(𝜌, 𝜎) to denote the trace distance between them, i.e.,

TD(𝜌, 𝜎) =
1

2
‖𝜌− 𝜎‖1

where ‖𝑋‖1 = Tr(
√
𝑋†𝑋) denotes the trace norm. We denote ‖𝑋‖ := sup|𝜓⟩{⟨𝜓|𝑋|𝜓⟩} to be the

operator norm where the supremum is taken over all unit vectors. For a vector 𝑥, we denote its
Euclidean norm to be ‖𝑥‖2.

General Measurements. A general measurement on a Hilbert space ℋ is a set 𝑀 = {𝑀𝑎}𝑎∈𝐴 of
operators acting on ℋ indexed by some finite set 𝐴 of outcomes satisfying the completeness relation∑︁

𝑎∈𝐴
𝑀 †𝑎𝑀𝑎 = 𝐼 .

Applying the measurement 𝑀 to a density matrix 𝜌 ∈ 𝒟(ℋ) corresponds to the following operation:
outcome 𝑎 is obtained with probability Tr(𝑀 †𝑎𝑀𝑎𝜌), and the post-measurement state is defined to

𝜌 ↦→ 𝑀𝑎𝜌𝑀
†
𝑎

Tr(𝑀 †𝑎𝑀𝑎𝜌)
.

Haar Measure. The Haar measure over ℂ𝑑, denoted by H (ℂ𝑑) is the uniform measure over all
𝑑-dimensional unit vectors. One useful property of the Haar measure is that for all 𝑑-dimensional
unitary matrices 𝑈 , if a random vector |𝜓⟩ is distributed according to the Haar measure H (ℂ𝑑),
then the state 𝑈 |𝜓⟩ is also distributed according to the Haar measure. For notational convenience
we write H𝑚 to denote the Haar measure over 𝑚-qubit space, or H ((ℂ2)⊗𝑚).

Fact 2.1. We have
𝔼

|𝜓⟩←H (ℂ𝑑)
|𝜓⟩⟨𝜓| = 𝐼

𝑑
.

The following result, known as Lévy’s Lemma, expresses strong concentration of measure for the
Haar measure.
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Fact 2.2 (Lévy’s Lemma [HLW06]). Let 𝑓 : ℂ𝑑 → ℝ be a function such that for all unit vectors
|𝜓⟩ , |𝜑⟩ we have

|𝑓(|𝜓⟩)− 𝑓(|𝜑⟩)| ≤ 𝐾 · ‖|𝜓⟩ − |𝜑⟩‖2
for some number 𝐾 > 0. Then there exists a universal constant 𝐶 > 0 such that

Pr
|𝜓⟩←H (ℂ𝑑)

[|𝑓(|𝜓⟩)− 𝔼 𝑓 | ≥ 𝛿] ≤ exp
(︁
− 𝐶𝑑𝛿2

𝐾2

)︁
where 𝔼 𝑓 denotes the average of 𝑓 over the Haar distribution H (ℂ𝑑).

2.1 Quantum Algorithms

A quantum algorithm 𝐴 is a family of generalized quantum circuits {𝐴𝜆}𝜆∈ℕ over a discrete universal
gate set (such as {𝐶𝑁𝑂𝑇,𝐻, 𝑇}). By generalized, we mean that such circuits can have a subset of
input qubits that are designated to be initialized in the zero state, and a subset of output qubits that
are designated to be traced out at the end of the computation. Thus a generalized quantum circuit
𝐴𝜆 corresponds to a quantum channel, which is a is a completely positive trace-preserving (CPTP)
map. When we write 𝐴𝜆(𝜌) for some density matrix 𝜌, we mean the output of the generalized circuit
𝐴𝜆 on input 𝜌. If we only take the quantum gates of 𝐴𝜆 and ignore the subset of input/output qubits
that are initialized to zeroes/traced out, then we get the unitary part of 𝐴𝜆, which corresponds to a
unitary operator which we denote by 𝐴𝜆. The size of a generalized quantum circuit is the number
of gates in it, plus the number of input and output qubits.

We say that 𝐴 = {𝐴𝜆}𝜆 is a quantum polynomial-time (QPT) algorithm if there exists a polyno-
mial 𝑝 such that the size of each circuit 𝐴𝜆 is at most 𝑝(𝜆). We furthermore say that 𝐴 is uniform
if there exists a deterministic polynomial-time Turing machine 𝑀 that on input 1𝑛 outputs the
description of 𝐴𝜆.

We also define the notion of a non-uniform QPT algorithm𝐴 that consists of a family {(𝐴𝜆, 𝜌𝜆)}𝜆
where {𝐴𝜆}𝜆 is a polynomial-size family of circuits (not necessarily uniformly generated), and for
each 𝜆 there is additionally a subset of input qubits of 𝐴𝜆 that are designated to be initialized
with the density matrix 𝜌𝜆 of polynomial length. This is intended to model nonuniform quantum
adversaries who may receive quantum states as advice. Nevertheless, the reductions we show in this
work are all uniform.

The notation we use to describe the inputs/outputs of quantum algorithms will largely mimick
what is used in the classical cryptography literature. For example, for a state generator algorithm
𝐺, we write 𝐺𝜆(𝑘) to denote running the generalized quantum circuit 𝐺𝜆 on input |𝑘⟩⟨𝑘|, which
outputs a state 𝜌𝑘.

Ultimately, all inputs to a quantum circuit are density matrices. However, we mix-and-match
between classical, pure state, and density matrix notation; for example, we may write 𝐴𝜆(𝑘, |𝜃⟩ , 𝜌)
to denote running the circuit 𝐴𝜆 on input |𝑘⟩⟨𝑘| ⊗ |𝜃⟩⟨𝜃| ⊗ 𝜌. In general, we will not explain all the
input and output sizes of every quantum circuit in excruciating detail; we will implicitly assume that
a quantum circuit in question has the appropriate number of input and output qubits as required
by context.
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3 Pseudorandom States

The notion of pseudorandom states were first introduced by Ji, Liu, and Song in [JLS18]. We
reproduce their definition here:

Definition 3.1 (PRS Generator [JLS18]). We say that a QPT algorithm 𝐺 is a pseudorandom
state (PRS) generator if the following holds.

1. State Generation. There is a negligible function 𝜀(·) such that for all 𝜆 and for all 𝑘 ∈
{0, 1}𝜆, the algorithm 𝐺 behaves as

𝐺𝜆(𝑘) = |𝜓𝑘⟩⟨𝜓𝑘| .

for some 𝑛(𝜆)-qubit pure state |𝜓𝑘⟩.

2. Pseudorandomness. For all polynomials 𝑡(·) and QPT (nonuniform) distinguisher 𝐴 there
exists a negligible function 𝜀(𝜆) such that for all 𝜆, we have⃒⃒⃒⃒

⃒ Pr
𝑘←{0,1}𝜆

[︁
𝐴𝜆(𝐺𝜆(𝑘)

⊗𝑡(𝜆)) = 1
]︁
− Pr
|𝜗⟩←H𝑛(𝜆)

[︁
𝐴𝜆(|𝜗⟩⊗𝑡(𝜆)) = 1

]︁⃒⃒⃒⃒⃒ ≤ 𝜀(𝜆) .
We also say that 𝐺 is a 𝑛(𝜆)-PRS generator to succinctly indicate that the output length of 𝐺 is
𝑛(𝜆).

Ji, Liu, and Song showed that post-quantum one-way functions can be used to construct PRS
generators.

Theorem 3.2 ([JLS18, BS20]). If post-quantum one-way functions exist, then there exist PRS
generators for all polynomial output lengths.

3.1 Pseudorandom Function-Like State (PRFS) Generators

In this section, we present our definition of pseudorandom function-like state (PRFS) generators.
PRFS generators generalize PRS generators in two ways: first, in addition to the secret key 𝑘,
the PRFS generator additionally takes in a (classical) input 𝑥. The security guarantee of a PRFS
implies that, even if 𝑥 is adversarily chosen, the output state of the generator is indistinguishable
from Haar-random. The second way in which this definition generalizes the definition of PRS
generators is that the output of the generator need not be a pure state.

Definition 3.3 (PRFS generator). We say that a QPT algorithm 𝐺 is a (selectively secure) pseu-
dorandom function-like state (PRFS) generator if for all polynomials 𝑠(·), 𝑡(·), QPT (nonuniform)
distinguishers 𝐴 and a family of indices ({𝑥1, . . . , 𝑥𝑠(𝜆)} ⊆ {0, 1}𝑑(𝜆))𝜆, there exists a negligible
function 𝜀(·) such that for all 𝜆,⃒⃒⃒

Pr
𝑘←{0,1}𝜆

[︁
𝐴𝜆(𝑥1, . . . , 𝑥𝑠(𝜆), 𝐺𝜆(𝑘, 𝑥1)

⊗𝑡(𝜆), . . . , 𝐺𝜆(𝑘, 𝑥𝑠(𝜆))
⊗𝑡(𝜆)) = 1

]︁
− Pr
|𝜗1⟩,...,|𝜗𝑠(𝜆)⟩←H𝑛(𝜆)

[︁
𝐴𝜆(𝑥1, . . . , 𝑥𝑠(𝜆), |𝜗1⟩⊗𝑡(𝜆) , . . . , |𝜗𝑠(𝜆)⟩⊗𝑡(𝜆)) = 1

]︁ ⃒⃒⃒
≤ 𝜀(𝜆) .

We also say that 𝐺 is a (𝑑(𝜆), 𝑛(𝜆))-PRFS generator to succinctly indicate that its input length is
𝑑(𝜆) and its output length is 𝑛(𝜆).

16



Our notion of security here can be seen as a version of (classical) selective security, where the
queries to the PRFS generator are fixed before the key is sampled. One could consider stronger
notions of security where the indistinguishability property holds even when the adversary is allowed
to query the PRFS generator adaptively, or even in superposition. We explore these stronger notions
in forthcoming work [AQY22].

State Generation Guarantees. As mentioned above, our definition of PRFS generator does
not require that the output of the generator is always a pure state. However, we will see later that
a consequence of the PRFS security guarantee is that the output of the generator is close to a pure
state for an overwhelming fraction of keys 𝑘 (see Lemma 3.6).

Nevertheless, for applications it is sometimes more useful to also consider a stronger guarantee
on the state generation of a PRFS generator.

Definition 3.4 (Perfect state generation). A (𝑑(𝜆), 𝑛(𝜆))-PRFS generator 𝐺 satisfies perfect state
generation, if for every 𝑘 ∈ {0, 1}𝜆 and 𝑥 ∈ {0, 1}𝑑(𝜆), there exists an 𝑛(𝜆)-qubit pure state |𝜓⟩ such
that 𝐺𝜆(𝑘, 𝑥) = |𝜓⟩⟨𝜓|.

We observe that an 𝑛(𝜆)-PRS generator defined in Definition 3.1 is by definition equivalent to
an (0, 𝑛(𝜆))-PRFS generator with perfect state generation.

In general, it may be difficult to construct PR(F)S with perfect state generation as the state
generation could occasionally fail; for example, the generator may perform a (quantum) rejection
sampling procedure in order to output the state. The scalable PRS generators of Brakerski and
Shmueli [BS20] is an example of this. To capture a very natural class of PRFS generators (including
the one constructed in this paper), we define the notion of a PRFS generator where 𝐺(𝑘, 𝑥) outputs
a convex combination of a fixed pure state |𝜓𝑘,𝑥⟩ or a known abort state |⊥⟩.

Definition 3.5 (Recognizable abort). A (𝑑(𝜆), 𝑛(𝜆))-PRFS generator 𝐺 has the recognizable abort
property if for every 𝑘 ∈ {0, 1}𝜆 and 𝑥 ∈ {0, 1}𝑑(𝜆) there exists an 𝑛(𝜆)-qubit pure state |𝜓⟩ and
0 ≤ 𝜂 ≤ 1 such that 𝐺𝜆(𝑘, 𝑥) = 𝜂 |𝜓⟩⟨𝜓|+ (1− 𝜂) |⊥⟩⟨⊥|, where ⊥ is a special symbol8.

Note that this definition alone does not have any constraint on 𝜂 being close to 1. However, the
security guarantee of a PRFS generator implies that 𝜂 will be negligibly close to 1 with overwhelming
probability over the choice of 𝑘.9 We also note that a PRFS generator with perfect state generation
trivially has the recognizable abort property with 𝜂 = 1 for all 𝑘, 𝑥.

3.2 Basic Properties of PRS and PRFS Generators

In this section we present the following Lemma, which establishes some orthogonality and purity
properties of the output of PRFS generators, on average over the key.

Lemma 3.6 (Properties of PRFS generator outputs). Let 𝐺 be a (𝑑, 𝑛)-PRFS generator. Then
there exists a negligible function 𝜀(𝜆) such that for all 𝜆, for all 𝑥, 𝑦 ∈ {0, 1}𝑑(𝜆) where 𝑥 ̸= 𝑦, we
have

8One can think of |⊥⟩ as the (𝑛 + 1)-qubit state |100 · · · 0⟩ with the first qubit indicating whether the generator
aborted or not. If the generator doesn’t abort, then it outputs |0⟩ ⊗ |𝜓⟩ for some pure state |𝜓⟩ (called the correct
output state of 𝐺 on input (𝑘, 𝑥)). The distinguisher in the definition of PRFS generator would then only get the last
𝑛 qubits as input.

9The argument is as follows: if 𝜂 were on average noticeably far from 1, then a purity test using SWAP tests
would distinguish the outputs from Haar random states which are pure. This is formalized in Lemma 3.6.
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1. 𝔼𝑘←{0,1}𝜆 Tr(𝐺𝜆(𝑘, 𝑥)𝐺𝜆(𝑘, 𝑦)) ≤ 2−𝑛(𝜆) + 𝜀(𝜆);

2. 𝔼𝑘←{0,1}𝜆 Tr(𝐺𝜆(𝑘, 𝑥)
2) ≥ 1− 𝜀(𝜆).

Proof. Consider the following QPT algorithm 𝐴: on input (𝑥, 𝑦, |𝜑1⟩ , |𝜑2⟩), it performs the SWAP
test on |𝜑1⟩ and |𝜑2⟩ and accepts if the SWAP test accepts. If |𝜑1⟩ , |𝜑2⟩ are independently sampled
according to the Haar measure on 𝑛(𝜆) qubits, the acceptance probability is on average

1

2
+

1

2
𝔼

|𝜑1⟩,|𝜑2⟩←H𝑛

|⟨𝜑1|𝜑2⟩|2 =
1

2
+

1

2
2−𝑛(𝜆) (1)

where we used Fact 2.1. On the other hand, if the algorithm𝐴 is run on input (𝑥, 𝑦,𝐺𝜆(𝑘, 𝑥), 𝐺𝜆(𝑘, 𝑦))
for randomly chosen 𝑘 the acceptance probability is on average

1

2
+

1

2
𝔼

𝑘←{0,1}𝜆
Tr(𝐺𝜆(𝑘, 𝑥)𝐺𝜆(𝑘, 𝑦)) . (2)

Since 𝐴 is a QPT algorithm, by the pseudorandomness property of the PRFS generator, Equa-
tions (1) and (2) are negligibly different. Specifically, their difference is 𝜀(𝜆), where 𝜀(𝜆) is the
negligible function guaranteed by the pseudorandomness property. This implies the first item of the
Lemma.

For the second item of the Lemma, if |𝜑1⟩ = |𝜑2⟩, then the algorithm 𝐴 accepts (𝑥, 𝑥, |𝜑1⟩ , |𝜑1⟩)
with probability 1. On the other hand, if the algorithm 𝐴 is run on input (𝑥, 𝑥,𝐺𝜆(𝑘, 𝑥), 𝐺𝜆(𝑘, 𝑥)),
then the acceptance probability is on average

1

2
+

1

2
𝔼

𝑘←{0,1}𝜆
Tr(𝐺𝜆(𝑘, 𝑥)

2) .

Since the algorithm is efficient and only uses the output of the generator instead of the key, this
implies that 𝔼𝑘←{0,1}𝜆 Tr(𝐺𝜆(𝑘, 𝑥)2) is negligibly (specifically, 𝜀(𝜆)) different from 1, as desired.

3.3 Testing Pseudorandom States

Given a state 𝜌, it is useful to know whether it is the output of a PRFS generator with key 𝑘 and
input 𝑥. One approach would be to invoke the generator to get some number of copies and perform
SWAP tests. Unfortunately, this approach would only achieve polynomially small error, which is
undesirable for cryptographic applications where we want negligible security. Another approach is
to “uncompute” the state generation. The issue with this approach is that it is not clear how to do
it when the state generation is not perfect, or if it outputs some additional auxiliary states that we
do not know how to uncompute.

In the following, we will show how to use the generator in a semi-black-box way to test any
PRFS states. We first state a general Lemma that shows how to convert any circuit that generates
a state 𝜌 into a tester (of sorts) for the state 𝜌.

Lemma 3.7 (Circuit output tester). Let 𝐺 denote a (generalized) quantum circuit that takes no
input and outputs an 𝑛-qubit mixed state 𝜌. Then there exists a circuit 𝖳𝖾𝗌𝗍 with boolean output
such that:
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1. For all density matrices 𝜎𝖤𝖰 where 𝖰 is an 𝑛-qubit register, applying the circuit 𝖳𝖾𝗌𝗍 on register
𝖰 yields the following state on registers 𝖤𝖥 where 𝖥 stores the decision bit:

(𝐼𝖤 ⊗ 𝖳𝖾𝗌𝗍𝖰)(𝜎𝖤𝖰) =
∑︁
𝑏

Tr𝖰

(︁
(𝐼𝖤 ⊗𝑀𝑏)𝜎𝖤𝖰

)︁
⊗ |𝑏⟩⟨𝑏|𝖥

where 𝑀1 = 𝜌2 and 𝑀0 = 𝐼 −𝑀1.

2. Furthermore, 𝖳𝖾𝗌𝗍 runs the unitary part10 of 𝐺 as a black box, and if the complexity of 𝐺 is
𝑇 , the complexity of 𝖳𝖾𝗌𝗍 is 𝑂(𝑇 + 𝑛).

Proof. Consider the unitary part �̂� of 𝐺, which takes as input a register 𝖠 and outputs registers
𝖱𝖡 where 𝖱 has 𝑛-qubits and 𝖠 and 𝖡 have the appropriate number of qubits.

The circuit 𝖳𝖾𝗌𝗍 takes as input an 𝑛-qubit register 𝖰 and outputs registers 𝖥𝖰 where 𝖥 is a
single-qubit accept/reject register. It behaves as follows:

1. Initialize an ancilla register 𝖠 in the state |0 · · · 0⟩, and initialize a single-qubit register 𝖥 in
the state |0⟩.

2. Run the unitary part �̂� on register 𝖠 to obtain registers 𝖱𝖡;

3. Swap the registers 𝖰 and 𝖱;

4. Apply the inverse �̂�† on registers 𝖱𝖡 to get register 𝖠;

5. Measure the register 𝖠 in the computational basis; if the outcome is |0 · · · 0⟩, then flip the
qubit in 𝖥 to |1⟩.

6. Trace out the register 𝖰.

This concludes the description of 𝖳𝖾𝗌𝗍. Item 2 of the Lemma statement follows from inspection.

𝜎 /
𝑆

× 𝖰

|0 · · · 0⟩ / �̂� �̂�† ∙ 𝖠

|0⟩ 𝖥

Figure 1: 𝖳𝖾𝗌𝗍 circuit. The 𝑆 gate denotes SWAP between registers 𝖰 and 𝖱. The 𝖥 register is set
to |1⟩ if and only if the 𝖠 register measures to all zeroes. The 𝖰 and 𝖠 registers are traced out at
the end.

We now prove Item 1 of the Lemma statement. Fix a density matrix 𝜎𝖤𝖰. Without loss of
generality we can assume that 𝜎 is a pure state |𝜃⟩𝖤𝖰 (because we can let 𝖤 contain the purification).
We analyze running the circuit 𝖳𝖾𝗌𝗍 on 𝖰 of |𝜃⟩.

Let |𝜃⟩𝖤𝖰 =
∑︀

𝑖 𝛼𝑖 |𝑢𝑖⟩𝖤 ⊗ |𝑣𝑖⟩𝖰 denote the Schmidt decomposition of |𝜃⟩ for some orthonormal
bases {|𝑢𝑖⟩}, {|𝑣𝑖⟩}. After Step 2 of the 𝖳𝖾𝗌𝗍 circuit, the global state is

|𝜃⟩𝖤𝖰 ⊗ �̂� |0 · · · 0⟩𝖠 .

10See Section 2.1 for a definition of the unitary part of a generalized quantum circuit.
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Let �̂� |0⟩𝖠 =
∑︀

𝑗 𝛽𝑗 |𝜓𝑗⟩𝖱 ⊗ |𝜑𝑗⟩𝖡 denote the Schmidt decomposition of �̂� |0⟩ for some orthonormal
bases {|𝜓𝑗⟩}, {|𝜑𝑗⟩}. After Step 3 the global state can be written as∑︁

𝑖𝑗

𝛼𝑖𝛽𝑗 |𝑢𝑖⟩𝖤 ⊗ |𝜓𝑗⟩𝖰 ⊗ |𝑣𝑖⟩𝖱 ⊗ |𝜑𝑗⟩𝖡 .

After Step 4 the global state can be written as∑︁
𝑖𝑗

𝛼𝑖𝛽𝑗 |𝑢𝑖⟩𝖤 ⊗ |𝜓𝑗⟩𝖰 ⊗ �̂�
†
(︁
|𝑣𝑖⟩𝖱 ⊗ |𝜑𝑗⟩𝖡

)︁
.

In Step 5, the 𝖠 register is measured. If the outcome is all zeroes, then the post-measurement state
can be written as (up to normalization)∑︁

𝑖𝑗

𝛼𝑖𝛽𝑗 |𝑢𝑖⟩𝖤 ⊗ |𝜓𝑗⟩𝖰 ⊗ |0⟩⟨0|𝖠 �̂�
†
(︁
|𝑣𝑖⟩𝖱 ⊗ |𝜑𝑗⟩𝖡

)︁
=
∑︁
𝑖𝑗

𝛼𝑖𝛽𝑗 |𝑢𝑖⟩𝖤 ⊗ |𝜓𝑗⟩𝖰 ⊗
(︁∑︁

𝑘

𝛽𝑘 ⟨𝜓𝑘|𝖱 ⊗ ⟨𝜑𝑘|𝖡
)︁(︁
|𝑣𝑖⟩𝖱 ⊗ |𝜑𝑗⟩𝖡

)︁
|0⟩𝖠

=
∑︁
𝑖𝑗

𝛼𝑖 𝛽
2
𝑗 ⟨𝜓𝑗 |𝑣𝑖⟩ |𝑢𝑖⟩𝖤 ⊗ |𝜓𝑗⟩𝖰 ⊗ |0⟩𝖠

= (𝐼𝖤 ⊗ 𝜌𝖰) |𝜃⟩𝖤𝖰 ⊗ |0⟩𝖠

where in the second line we used our Schmidt decomposition for �̂� |0 · · · 0⟩ and in the third line we
used the orthonormality of the basis {|𝜑𝑗⟩}. The fourth line follows since by definition of 𝐺 we have
𝜌 =

∑︀
𝑗 𝛽

2
𝑗 |𝜓𝑗⟩⟨𝜓𝑗 |.

If the measurement outcome is all zeroes, the register 𝖥 is set to |1⟩. Otherwise it remains |0⟩.
In Step 6, the registers 𝖰 and 𝖠 are traced out. Thus conditioned on getting the all zeroes

outcome, the state on register 𝖤 is

Tr𝖰

(︁
𝜌𝖰 |𝜃⟩⟨𝜃|𝖤𝖰 𝜌𝖰

)︁
= Tr𝖰

(︁
𝜌2𝖰 |𝜃⟩⟨𝜃|𝖤𝖰

)︁
where we used the cyclicity of the partial trace with respect to operators acting on register 𝖰 only.
Conditioned on not getting the all zeroes outcome, it must be that the state on register 𝖤 is

Tr𝖰

(︁
(𝐼 − 𝜌2)𝖰 |𝜃⟩⟨𝜃|𝖤𝖰

)︁
.

This establishes that the output of the 𝖳𝖾𝗌𝗍 algorithm is as described in the Lemma statement.

We note that if a PRFS satisfies perfect state generation, then the 𝖳𝖾𝗌𝗍 algorithm corresponding
to the circuit 𝐺𝜆(𝑘, 𝑥) implements a projection onto the state |𝜓𝑘,𝑥⟩ = 𝐺𝜆(𝑘, 𝑥) in the case that the
𝖳𝖾𝗌𝗍 accepts (i.e. outputs 1). If the PRFS satisfies the weaker recognizable abort property, we get
that the 𝖳𝖾𝗌𝗍 algorithm implements a scaled projection onto the correct state |𝜓𝑘,𝑥⟩.

Corollary 3.8 (PRFS tester with recognizable abort). Let 𝐺 be a (𝑑, 𝑛)-PRFS generator with
the recognizable abort property. Then there exists a QPT algorithm 𝖳𝖾𝗌𝗍 such that for all 𝜆, 𝑘 ∈

20



{0, 1}𝜆 and 𝑥 ∈ {0, 1}𝑑(𝜆), for all density matrices 𝜎𝖤𝖰 where 𝖰 is an 𝑛(𝜆)-qubit register, applying
𝖳𝖾𝗌𝗍(𝑘, 𝑥, ·) to register 𝖰 yields the following state on registers 𝖤𝖥 where 𝖥 stores the decision bit:

(𝐼𝖤 ⊗ 𝖳𝖾𝗌𝗍𝖰)(𝑘, 𝑥, 𝜎𝖤𝖰) =
∑︁
𝑏

Tr𝖰

(︁
(𝐼𝖤 ⊗𝑀𝑏)𝜎𝖤𝖰

)︁
⊗ |𝑏⟩⟨𝑏|𝖥

where 𝑀1 = 𝜂2 |𝜓⟩⟨𝜓| and 𝑀0 = 𝐼 −𝑀1 with 𝜂, |𝜓⟩ (which generally depend on 𝑘, 𝑥) are those
guaranteed by the recognizable abort property.

Proof. Fix 𝜆 and 𝑘 ∈ {0, 1}𝜆, 𝑥 ∈ {0, 1}𝑑(𝜆). By the recognizable abort property, we know that
𝐺𝜆(𝑘, 𝑥) = 𝜂 |𝜓⟩⟨𝜓| + (1 − 𝜂) |⊥⟩⟨⊥|. We implement the circuit 𝖳𝖾𝗌𝗍 by first testing whether the
input state is |⊥⟩ (which we can do since it is a fixed known state), rejecting if so, and otherwise
applying the test circuit from Lemma 3.7 with the circuit 𝐺𝑘,𝑥 that takes no input and outputs
𝜌 = 𝐺𝜆(𝑘, 𝑥). Since we projected the input state to have no overlap with |⊥⟩, we get that

𝜌 𝜎 𝜌 = 𝜂2 |𝜓⟩⟨𝜓| 𝜎 |𝜓⟩⟨𝜓|

as desired.

Next we analyze a product of 𝖳𝖾𝗌𝗍 algorithms run in parallel on different qubits of a (possibly
entangled) state.

Corollary 3.9 (Product of PRFS testers with recognizable abort). Let 𝐺 be a (𝑑, 𝑛)-PRFS genera-
tor with the recognizable abort property and let 𝖳𝖾𝗌𝗍 denote the corresponding tester algorithm given
by Corollary 3.8. Fix 𝜆, 𝑡 ∈ ℕ. For all 𝑘1, . . . , 𝑘𝑡 ∈ {0, 1}𝜆 and for all 𝑥1, . . . , 𝑥𝑡 ∈ {0, 1}𝑑(𝜆), define
the QPT algorithm 𝖳𝖾𝗌𝗍⊗𝑡 that given an 𝑡 · 𝑛(𝜆)-qubit density matrix 𝜎 behaves as follows: for all
𝑖 = 1, . . . , 𝑡, on the 𝑖’th block of 𝑛(𝜆) qubits of 𝜎, run the algorithm 𝖳𝖾𝗌𝗍𝜆(𝑘𝑖, 𝑥𝑖, ·). Output 1 if and
only if all 𝑡 invocations of 𝖳𝖾𝗌𝗍 output 1.

Then 𝖳𝖾𝗌𝗍⊗𝑡 satisfies the following. For all density matrices 𝜎𝖤𝖰 where 𝖰 is an 𝑡 · 𝑛(𝜆)-qubit
register, applying 𝖳𝖾𝗌𝗍⊗𝑡 to register 𝖰 yields the following state on registers 𝖤𝖰𝖥 where 𝖥 stores the
decision bit:

(𝐼𝖤 ⊗ 𝖳𝖾𝗌𝗍⊗𝑡)(𝜎𝖤𝖰) =
∑︁
𝑏

Tr𝖰

(︁
(𝐼𝖤 ⊗𝑀𝑏)𝜎𝖤𝖰

)︁
⊗ |𝑏⟩⟨𝑏|𝖥

where 𝑀1 = 𝜂2 |𝜓⟩⟨𝜓| and 𝑀0 = 𝐼 −𝑀1 with |𝜓⟩ = |𝜓𝑘1,𝑥1⟩ ⊗ · · · ⊗ |𝜓𝑘𝑡,𝑥𝑡⟩, and 𝜂 = 𝜂𝑘1,𝑥1 · · · 𝜂𝑘𝑡,𝑥𝑡
where |𝜓𝑘𝑖,𝑥𝑖⟩ , 𝜂𝑘𝑖,𝑥𝑖 for 𝑖 = 1, ..., 𝑡 are the values guaranteed by the recognizable abort property.

Proof. This follows from the fact that each invocation of 𝖳𝖾𝗌𝗍(𝑘𝑖, 𝑥𝑖, ·), conditioned on accepting,
implements a (scaled) projection 𝜂𝑘𝑖,𝑥𝑖 |𝜓𝑘𝑖,𝑥𝑖⟩⟨𝜓𝑘𝑖,𝑥𝑖 | on a disjoint register of 𝜎.

We note that the previous two Corollaries establish the behavior of the 𝖳𝖾𝗌𝗍 procedure for every
fixed key 𝑘 (or sequence of keys, in the case of Corollary 3.9). The next Lemma establishes the
behavior of the 𝖳𝖾𝗌𝗍 procedure when given outputs of any PRFS generator (even ones without
recognizable abort); the bounds are stated on average over a uniformly random key 𝑘.

Lemma 3.10 (Self-testing PRFS). Let 𝐺 be a (𝑑, 𝑛)-PRFS generator and 𝖳𝖾𝗌𝗍(𝑘, 𝑥, ·) denote the
tester algorithm for 𝐺(𝑘, 𝑥) given by Lemma 3.7. There exists a negligible function 𝜈(·) such that
for all 𝜆, for all 𝑥 ̸= 𝑦,

Pr
𝑘
[𝖳𝖾𝗌𝗍(𝑘, 𝑥,𝐺(𝑘, 𝑥)) = 1] ≥ 1− 𝜈(𝜆),

and
Pr
𝑘
[𝖳𝖾𝗌𝗍(𝑘, 𝑥,𝐺(𝑘, 𝑦)) = 1] ≤ 2−𝑛(𝜆) + 𝜈(𝜆).
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Proof. By Lemma 3.7,

Pr
𝑘
[𝖳𝖾𝗌𝗍(𝑘, 𝑥,𝐺(𝑘, 𝑥)) = 1] = 𝔼

𝑘

[︀
Tr(𝐺(𝑘, 𝑥)3)

]︀
≥ 𝔼

𝑘

[︂
Tr(𝐺(𝑘, 𝑥)2)2

Tr(𝐺(𝑘, 𝑥))

]︂
= 𝔼

𝑘

[︀
Tr(𝐺(𝑘, 𝑥)2)2

]︀
,

which is negligibly close to 1 by Item 1 of Lemma 3.6 and Markov’s inequality, and the inequality
is due to the following fact. For any finite-dimensional vector 𝑥 with non-negative coefficients, by
Cauchy–Schwarz we have

‖𝑥‖1‖𝑥‖
3
3 =

(︃∑︁
𝑖

𝑥𝑖

)︃(︃∑︁
𝑖

𝑥3𝑖

)︃
≥

(︃∑︁
𝑖

√
𝑥𝑖

√︁
𝑥3𝑖

)︃2

= ‖𝑥‖42.

Similarly,

Pr
𝑘
[𝖳𝖾𝗌𝗍(𝑘, 𝑥,𝐺(𝑘, 𝑦)) = 1] = 𝔼

𝑘

[︀
Tr(𝐺(𝑘, 𝑥)2𝐺(𝑘, 𝑦))

]︀
≤ 𝔼

𝑘
[Tr(𝐺(𝑘, 𝑥)𝐺(𝑘, 𝑦))] ,

which is at most negligibly larger than 2−𝑛(𝜆) by Item 2 of Lemma 3.6, and the inequality is due to
the fact that 𝐺(𝑘, 𝑥) ≼ 𝐼.

4 Constructing PRFS from PRS

In this section we present our construction of PRFS generators using PRS generators, which are
seemingly weaker objects. As mentioned in the introduction, there is a trivial construction of
PRFS from PRS. Let 𝐺 be a PRS generator. Define the PRFS generator 𝐺′ with input length
𝑑(𝜆) = 𝑂(log 𝜆), where 𝐺′𝜆′(𝑘, 𝑥) = 𝐺𝜆(𝑘𝑥) with 𝜆′ = 2𝑑(𝜆)𝜆 and 𝑘𝑥 denoting the 𝑥’th block of 𝜆
bits in 𝑘 ∈ {0, 1}𝜆′ . However, this simple construction is such that the input length is always at
most logarithmic in the seed length. This, as far as we can tell, is not very useful for applications.

We are going to present a more interesting construction: we will build a PRFS generator for
any input length 𝑑(𝜆) that is at most constant times log 𝜆, as long as the the output length of
the starting PRS generator is at least 2𝑑(𝜆) + 𝜔(log log 𝜆). Although the input length may appear
modest, such PRFS generators are sufficient for most of the applications we consider in this paper.
We find it an intriguing question of whether it is possible to construct PRFS generators with longer
input lengths from PRS generators in a black box way.

Theorem 4.1. Let 𝑑(𝜆), 𝑛(𝜆) be functions such that 𝑑(𝜆) = 𝑂(log 𝜆) and 𝑛(𝜆) = 𝑑(𝜆)+𝜔(log log 𝜆).
Let 𝐺 denote a (𝑛(𝜆) + 𝑑(𝜆))-PRS generator. Then there exists a (𝑑(𝜆), 𝑛(𝜆))-PRFS generator 𝐹
with the recognizable abort property, such that for all 𝜆 the circuit 𝐹𝜆 invokes the 𝐺𝜆 as a black box.

The rest of this section is dedicated to proving the theorem. For notational clarity we use the
abbreviations 𝑑 = 𝑑(𝜆) and 𝑛 = 𝑛(𝜆).

The construction of the PRFS generator is given by the following circuit 𝐹𝜆(𝑘, 𝑥). On input key
𝑘 ∈ {0, 1}𝜆, input 𝑥 ∈ {0, 1}𝑑, repeat the following 2𝑑 · 𝜆 times:

• Compute the (𝑑+ 𝑛)-qubit state 𝜌𝑘 ← 𝐺𝜆(𝑘).

• Measure the first 𝑑 qubits of 𝜌𝑘 in the computational basis to obtain a string 𝑦 ∈ {0, 1}𝑑. If
𝑦 = 𝑥, then output the remaining 𝑛 qubits. Otherwise, continue.
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If the measurement outcomes was different from 𝑥 in all the 2𝑑𝜆 iterations, set 𝜎𝑘,𝑥 = |⊥⟩⟨⊥|. Let
the output be 𝜎𝑘,𝑥.

The algorithm 𝐹 = {𝐹𝜆}𝜆 is uniform QPT because for each 𝜆, the running time of the circuit
𝐹𝜆 is going to be 𝑂(2𝑑 · 𝜆) times the complexity of running 𝐺𝜆, which is QPT since 𝑑 = 𝑂(log 𝜆)
and 𝐺 is QPT. It is easy to see that even if 𝐺 (as a PRFS generator) only satisfies recognizable
abort (instead of perfect generation), 𝐹 still satisfies recognizable abort by construction. Therefore,
the construction also works with the PRS generator constructed by Brakerski and Shmueli [BS20].

We now argue that the outputs of 𝐹 satisfy the pseudorandomness property of a PRFS. Assume
for contradiction that there exists a non-uniform QPT adversary 𝐴 and distinct 𝑥1, . . . , 𝑥𝑠 ∈ {0, 1}𝑑
such that ⃒⃒⃒

Pr
𝑘←{0,1}𝜆

[︀
𝐴𝜆(𝑥1, . . . , 𝑥𝑠, 𝐹𝜆(𝑘, 𝑥1)

⊗𝑡, . . . , 𝐹𝜆(𝑘, 𝑥𝑠)
⊗𝑡) = 1

]︀
(3)

− Pr
|𝜗1⟩,...,|𝜗𝑠⟩←H𝑛

[︀
𝐴𝜆(𝑥1, . . . , 𝑥𝑠, |𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡) = 1

]︀ ⃒⃒⃒
= 𝜀(𝜆)

is not negligible in 𝜆. Let 𝑀 = 𝜆𝑠𝑡2𝑑 = 𝜆𝑂(1). We are going to construct an adversary 𝐵 that
breaks the pseudorandomness property for the underlying PRS used in the construction using 𝑀
copies. Formally, 𝐵𝜆 is a QPT algorithm that takes as input 𝜌⊗𝑀 where 𝜌 is a (𝑑+ 𝑛)-qubit state
and does the following:

• For 𝑗 = 1, . . . , 𝑠, repeat the following 𝑡 times:

– Repeat the following 𝜆2𝑑 times: Measure the first 𝑑 qubits of a new copy of 𝜌 in the
computational basis to obtain a string 𝑦 ∈ {0, 1}𝑑. If 𝑦 = 𝑥𝑗 , then save the remaining 𝑛
qubits of 𝜌 (which we denote as the state 𝜎𝑥𝑗 ). Otherwise, continue.

– If the outcome 𝑥𝑗 was never measured, 𝐵𝜆 aborts.

• Execute 𝑏← 𝐴𝜆
(︀
𝑥1, . . . , 𝑥𝑠, 𝜎

⊗𝑡
𝑥1 , . . . , 𝜎

⊗𝑡
𝑥𝑠

)︀
.

• Output 𝑏.

We show the following:⃒⃒⃒
Pr

𝑘←{0,1}𝜆

[︀
𝐵𝜆(𝐺𝜆(𝑘)

⊗𝑀 ) = 1
]︀
− Pr
|𝜗⟩←H𝑑+𝑛

[︁
𝐵𝜆(|𝜗⟩⊗𝑀 ) = 1

]︁ ⃒⃒⃒
≥ 𝜀(𝜆)− 𝜈(𝜆) (4)

for some negligible function 𝜈(𝜆). This in turn shows that the algorithm 𝐵 = {𝐵𝜆}𝜆 violates the
pseudorandomness assumption on the PRS generator 𝐺, which is a contradiction. Thus 𝜀(𝜆) must
be negligible.

We prove (4) by the following hybrid argument. Note that the probability on the left hand
side is by construction the same as the probability that 𝐴 outputs 1 in the real world experiment
(when 𝐴 is given PRFS as input). Therefore, we arrive at (4) by triangle inequality after comparing
the probability on the right hand side with the probability that 𝐴 outputs 1 in the ideal world
experiment (when 𝐴 is given Haar random states as input), which is given by the following Lemma.

Lemma 4.2. If 𝑑(𝜆) = 𝑂(log 𝜆) and 𝑛(𝜆) = 𝑑(𝜆) + 𝜔(log log 𝜆), then for any polynomial 𝑠(·), 𝑡(·),
there exists a negligible function 𝜈(𝜆) such that⃒⃒⃒⃒

Pr
|𝜗⟩←H𝑑+𝑛

[︁
𝐵𝜆(|𝜗⟩⊗𝑀 ) = 1

]︁
− Pr
|𝜗1⟩,...,|𝜗𝑠⟩←H𝑛

[︀
𝐴𝜆(𝑥1, . . . , 𝑥𝑠, |𝜗1⟩⊗𝑡 , . . . , |𝜗𝑠⟩⊗𝑡) = 1

]︀⃒⃒⃒⃒
≤ 𝜈(𝜆) .
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Proof. Consider the behavior of the algorithm 𝐵𝜆 on input |𝜗⟩⊗𝑀 for |𝜗⟩ sampled from the Haar
distribution H𝑑+𝑛. Define the distribution R over (𝑑+ 𝑛)-qubit unitary operators

𝑅 =
∑︁

𝑥∈{0,1}𝑑
|𝑥⟩⟨𝑥| ⊗𝑅𝑥

where (𝑅𝑥)𝑥∈{0,1}𝑑 is a sequence of i.i.d. Haar-random 𝑛-qubit unitaries.
Observe that, by the unitary invariance of the Haar measure, 𝑅 |𝜗⟩ is also distributed according

to H𝑑+𝑛. Therefore the algorithm 𝐵𝜆 behaves identically on input (𝑅 |𝜗⟩)⊗𝑀 for any 𝑅 in the
support.

Let 𝖠𝖻𝗈𝗋𝗍 denote the event that the algorithm 𝐵𝜆 aborts on input (𝑅 |𝜗⟩)⊗𝑀 ; this happens only
if there exists a 𝑗 ∈ [𝑠] such that, even after measuring the first 𝑑 qubits of 𝜆𝑡2𝑑 copies of 𝑅 |𝜗⟩, the
string 𝑥𝑗 occured fewer than 𝑡 times as a measurement outcome.

Notice that the event 𝖠𝖻𝗈𝗋𝗍 (and its negation) is independent of the choice of randomizing
unitaries (𝑅𝑥)𝑥; that is because applying 𝑅 to |𝜗⟩ does not change the distribution of measurement
outcomes on the first 𝑑 qubits. Thus, for all |𝜗⟩ =

∑︀
𝑥 𝛼𝑥 |𝑥⟩ ⊗ |𝜗𝑥⟩, conditioning on the event

¬𝖠𝖻𝗈𝗋𝗍 (the negation of 𝖠𝖻𝗈𝗋𝗍) still leaves the unitary 𝑅 distributed according to R.
Therefore for all |𝜗⟩ and for all 𝑅 we have

Pr
[︀
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
¬𝖠𝖻𝗈𝗋𝗍

]︀
= Pr

[︀
𝐴𝜆(𝑥1, . . . , 𝑥𝑠, (𝑅𝑥1 |𝜗𝑥1⟩)⊗𝑡, . . . , (𝑅𝑥𝑠 |𝜗𝑥𝑠⟩)⊗𝑡) = 1

]︀
(5)

where the probabilities are over the randomness of the measurements. Therefore, (5) also holds
if the probability also averages over the randomness of sampling 𝑅 ← R. Since the 𝑅𝑥𝑗 ’s are
i.i.d. Haar-random unitaries and the 𝑥𝑖’s are distinct, we conclude that (5) is exactly equal to the
probability 𝐴 outputs 1 in the ideal experiment. Thus

Pr
[︁
𝐵𝜆(|𝜗⟩⊗𝑀 ) = 1

]︁
= Pr

[︀
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

]︀
= Pr [𝖠𝖻𝗈𝗋𝗍] · Pr

[︁
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
𝖠𝖻𝗈𝗋𝗍

]︁
+ Pr [¬𝖠𝖻𝗈𝗋𝗍] · Pr

[︁
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
¬𝖠𝖻𝗈𝗋𝗍

]︁
= Pr [𝖠𝖻𝗈𝗋𝗍] ·

(︁
Pr
[︁
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
𝖠𝖻𝗈𝗋𝗍

]︁
− Pr

[︁
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
¬𝖠𝖻𝗈𝗋𝗍

]︁)︁
+ Pr

[︁
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
¬𝖠𝖻𝗈𝗋𝗍

]︁
where in the last equality we used Pr [¬𝖠𝖻𝗈𝗋𝗍] = 1− Pr [𝖠𝖻𝗈𝗋𝗍]. Thus combining this with (5),⃒⃒⃒

Pr
[︁
𝐵𝜆(|𝜗⟩⊗𝑀 ) = 1

]︁
− Pr

[︀
𝐴𝜆(𝑥1, . . . , 𝑥𝑠, (𝑅𝑥1 |𝜗𝑥1⟩)⊗𝑡, . . . , (𝑅𝑥𝑠 |𝜗𝑥𝑠⟩)⊗𝑡) = 1

]︀⃒⃒⃒
≤ Pr [𝖠𝖻𝗈𝗋𝗍] ·

⃒⃒⃒
Pr
[︁
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
𝖠𝖻𝗈𝗋𝗍

]︁
− Pr

[︁
𝐵𝜆((𝑅 |𝜗⟩)⊗𝑀 ) = 1

⃒⃒
¬𝖠𝖻𝗈𝗋𝗍

]︁⃒⃒⃒
≤ Pr [𝖠𝖻𝗈𝗋𝗍] .

We now estimate the probability of the event 𝖠𝖻𝗈𝗋𝗍. Fix a state |𝜗⟩ and let 𝑝𝑥𝑗 denote the
probability of obtaining 𝑥𝑗 when measuring the first 𝑑 qubits of |𝜗⟩, or equivalently since𝑅 commutes
with the measurement, 𝑅 |𝜗⟩. Fix a 𝑗 ∈ [𝑠]. The probability that measuring 𝜆2𝑑 copies of 𝑅 |𝜗⟩ fails
to yield the outcome 𝑥𝑗 is equal to (︁

1− 𝑝𝑥𝑗
)︁𝜆2𝑑
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The algorithm aborts if this happens in any of the 𝑠𝑡 iterations of the “main loop” of 𝐵𝜆; thus
the probability of 𝖠𝖻𝗈𝗋𝗍 is, by union bound, at most

𝑠∑︁
𝑗=1

𝑡
(︁
1− 𝑝𝑥𝑗

)︁𝜆2𝑑
The following Lemma establishes deviation bounds on the probabilities 𝑝𝑥:

Lemma 4.3. Let |𝜓⟩ be sampled from the Haar distribution H𝑑+𝑛. For all 𝑥 ∈ {0, 1}𝑑, let 𝑝𝑥
denote the probability of measuring the first 𝑑 qubits of |𝜓⟩ in the computational basis and obtaining
outcome 𝑥. Then for all 𝛿 > 0 with probability at least 1− 2𝑑+1 · exp(−𝐶2𝑛+𝑑𝛿2) over |𝜓⟩ for some
universal constant 𝐶 > 0, we have that

|𝑝𝑥 − 2−𝑑| ≤ 𝛿

for all 𝑥 ∈ {0, 1}𝑑.

By Lemma 4.3 (setting 𝛿 = 2−𝑑/2), with all but negligible probability over the choice of |𝜗⟩,
each of the 𝑝𝑥𝑗 ’s are at least 2−𝑑/2. Therefore by union bound, the probability of 𝖠𝖻𝗈𝗋𝗍, when
averaged over the choice of |𝜗⟩, is at most

𝑠𝑡(1− 2−𝑑/2)𝜆2
𝑑
+ 2 exp(−(𝐶2𝑛−𝑑 − 𝑑)) ≤ 𝑠𝑡 exp(−Ω(𝜆)) + 2 exp(−(𝐶2𝑛−𝑑 − 𝑑))

which for our choice of 𝑠, 𝑡, 𝑛, 𝑑 is negligible in 𝜆.

Proof of Lemma 4.3. We first show that, with high probability over |𝜓⟩, the probability obtaining
any fixed prefix 𝑥 ∈ {0, 1}𝑑 is going to be exponentially small in 2𝑛. We then apply a union bound
over all 𝑥 ∈ {0, 1}𝑑 to obtain the Lemma statement.

Let Π𝑥 denote the projector onto the first 𝑑 qubits being in the state |𝑥⟩. Define 𝑝𝑥 =
Tr(Π𝑥 |𝜓⟩⟨𝜓|). On average over the choice of |𝜓⟩, this quantity is equal to

𝔼
|𝜓⟩←H𝑑+𝑛

𝑝𝑥 = Tr

(︃
Π𝑥 𝔼

|𝜓⟩←H𝑑+𝑛

|𝜓⟩⟨𝜓|

)︃
= 2−(𝑑+𝑛)Tr(Π𝑥) = 2−𝑑

where we used the fact that the average of a Haar-random state is the maximally mixed state.
We now appeal to Lévy’s Lemma (Fact 2.2), which shows that 𝑝𝑥 concentrates tightly around
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its expectation. Define 𝑓(|𝜓⟩) = Tr(Π𝑥 |𝜓⟩⟨𝜓|). We calculate the Lipschitz constant of 𝑓 :

|𝑓(|𝜓⟩)− 𝑓(|𝜑⟩)|
‖|𝜓⟩ − |𝜑⟩‖2

=

⃒⃒⃒
Tr
(︁
Π𝑥(|𝜓⟩⟨𝜓| − |𝜑⟩⟨𝜑|)

)︁⃒⃒⃒
‖|𝜓⟩ − |𝜑⟩‖2

≤
‖|𝜓⟩⟨𝜓| − |𝜑⟩⟨𝜑|‖1
‖|𝜓⟩ − |𝜑⟩‖2

=
2
√︀

1− |⟨𝜓 | 𝜑⟩|2
‖|𝜓⟩ − |𝜑⟩‖2

=

2

√︂(︁
1− |⟨𝜓 | 𝜑⟩|

)︁(︁
1 + |⟨𝜓 | 𝜑⟩|

)︁
‖|𝜓⟩ − |𝜑⟩‖2

≤
2

√︂
2
(︁
1−ℜ⟨𝜓 | 𝜑⟩

)︁
‖|𝜓⟩ − |𝜑⟩‖2

≤ 2

for all |𝜓⟩ , |𝜑⟩. By Fact 2.2, we have

Pr
[︁⃒⃒⃒
𝑝𝑥 − 2−𝑑

⃒⃒⃒
≥ 𝛿
]︁
≤ 2 exp

(︁
− 𝐶2𝑑+𝑛𝛿2

)︁
for some universal constant 𝐶 > 0, where the probability is over |𝜓⟩ ←H𝑑+𝑛.

5 Quantum Pseudo One-Time Pad from PRFS

The first application of PRFS we present is the Quantum Pseudo One-Time Pad (QP-OTP). In
classical cryptography, a pseudo one-time pad is like the one-time pad except the key length is shorter
than the length of the plaintext message. This is often presented in introductory cryptography
courses as a basic example of using pseudorandomness to achieve a cryptographic task that is
impossible in the information-theoretic setting. Here, we use a PRFS in place of a PRG to encrypt
(classical) messages.

We point out that without knowing about the notion of PRFS, it appears difficult and challenging
to construct secure quantum one-time pad schemes directly from PRS generators alone.

Definition 5.1 (Quantum Pseudo One-Time Pad). We say that a pair of QPT algorithms (𝖤𝗇𝖼,𝖣𝖾𝖼)
is a quantum pseudo one-time pad (QP-OTP) for messages of length ℓ(𝜆) > 𝜆 for some polynomial
ℓ(·) if the following properties are satisfied:

• Correctness: There exists a negligible function 𝜀(·) such that for every 𝜆, every 𝑥 ∈ {0, 1}ℓ,

Pr
𝑘←{0,1}𝜆,
𝜎←𝖤𝗇𝖼𝜆(𝑘,𝑥)

[𝖣𝖾𝖼𝜆(𝑘, 𝜎) = 𝑥] ≥ 1− 𝜀(𝜆).
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• Security: There exist a polynomial 𝑛(·) such that for every polynomial 𝑡(·), for every nonuni-
form QPT adversary 𝐴, there exists a negligible function 𝜀(·) where for every 𝜆 and 𝑥 ∈ {0, 1}ℓ,⃒⃒⃒⃒

⃒⃒⃒ Pr
𝑘←{0,1}𝜆,
𝜎←𝖤𝗇𝖼𝜆(𝑘,𝑥)

[︀
𝐴𝜆(𝜎

⊗𝑡) = 1
]︀
− Pr
|𝜗1⟩,...,|𝜗ℓ⟩←H𝑛

[︀
𝐴𝜆((|𝜗1⟩ ⊗ · · · ⊗ |𝜗ℓ⟩)⊗𝑡) = 1

]︀⃒⃒⃒⃒⃒⃒⃒ ≤ 𝜀(𝜆),
where we have abbreviated 𝑛 = 𝑛(𝜆), ℓ = ℓ(𝜆), and 𝑡 = 𝑡(𝜆).

Here the security holds even if the adversary could see multiple copies of the same ciphertexts,
which might be useful for certain applications, for example when the communication channel is
adversarially lossy. However, when 𝑡 = 1, we can see that the security implies that the ciphertext is
computationally indistinguishable to random bit strings of length ℓ𝑛 (or a maximally mixed state)
by Fact 2.1.

To construct such a quantum pseudo one-time pad, let 𝐺 be a (𝑑(𝜆), 𝑛(𝜆))-PRFS generator
where 𝑑(𝜆) ≥ ⌈log ℓ(𝜆)⌉+1 and 𝑛(𝜆) = 𝜔(log 𝜆). We interpret 𝐺𝜆(𝑘, ·) as taking inputs of the form
(𝑖, 𝑏) where 𝑖 ∈ [ℓ(𝜆)] and 𝑏 ∈ {0, 1}. Let 𝖳𝖾𝗌𝗍 denote the test algorithm from Lemma 3.10.

Fix 𝜆 and let ℓ = ℓ(𝜆), 𝑑 = 𝑑(𝜆), and 𝑛 = 𝑛(𝜆).

1. 𝖤𝗇𝖼𝜆(𝑘, 𝑥): on input 𝑘 ∈ {0, 1}𝜆 and a message 𝑥 ∈ {0, 1}ℓ, do the following:

• For every 𝑖 ∈ [ℓ], compute 𝜎𝑖 ← 𝐺𝜆(𝑘, (𝑖, 𝑥𝑖)).

• Set 𝜎 = 𝜎1 ⊗ · · · ⊗ 𝜎ℓ.
• Output the ciphertext state 𝜎.

2. 𝖣𝖾𝖼𝜆(𝑘, 𝜎): on input 𝑘, ℓ𝑛-qubit ciphertext state 𝜎, perform the following operations:

• Parse 𝜎 as 𝜎1 ⊗ · · · ⊗ 𝜎ℓ.
• For 𝑖 ∈ [ℓ], execute 𝖳𝖾𝗌𝗍(𝑘, (𝑖, 0), 𝜎𝑖). If it accepts, set 𝑥𝑖 = 0. Otherwise, set 𝑥𝑖 = 1.

• Output 𝑥 = 𝑥1 · · ·𝑥ℓ.

Lemma 5.2. (𝖤𝗇𝖼,𝖣𝖾𝖼) satisfies the correctness property of a quantum pseudo one-time pad ac-
cording to Definition 5.1.

Proof. Fix 𝜆 and let ℓ = ℓ(𝜆). Fix a message 𝑥 ∈ {0, 1}ℓ. Let 𝜎𝑘,𝑖 = 𝐺𝜆(𝑘, (𝑖, 𝑥𝑖)) and let
𝜎𝑘 = 𝜎𝑘,1 ⊗ · · · ⊗ 𝜎𝑘,ℓ.

Consider the decryption process. Fix an index 𝑖 ∈ [ℓ]. By Lemma 3.10, the probability that
𝖳𝖾𝗌𝗍

(︁
𝑘, (𝑖, 0), 𝜎𝑘,𝑖

)︁
accepts (on average over 𝑘) is negligibly close to 1 if 𝑥𝑖 = 0, and it is negligibly

close to 0 if 𝑥𝑖 = 1, on average over the key 𝑘 (here we use the fact that the output length of the
PRFS generator is 𝜔(log 𝜆), so that 2−𝑛(𝜆) is negligible). Thus the probability that the correct bit
𝑥𝑖 gets decoded is negligibly close to 1. Taking a union bound over all indices 𝑖 ∈ [ℓ], we get that
the probability of decoding 𝑥 is negligibly close to 1, over the randomness of the key 𝑘 and the
decryption algorithm.

Lemma 5.3. (𝖤𝗇𝖼,𝖣𝖾𝖼) satisfies the security property of quantum pseudo one-time pad according
to Definition 5.1.
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Proof. We prove the security via a hybrid argument. Let 𝑛(𝜆) denote the output length of the
PRFS generator 𝐺. Fix 𝜆, and let ℓ = ℓ(𝜆), 𝑛 = 𝑛(𝜆), and 𝑡 = 𝑡(𝜆). Fix a message 𝑥 ∈ {0, 1}ℓ.
Consider a nonuniform QPT adversary 𝐴 such that 𝐴𝜆 takes as input 𝑡 copies of an ℓ𝑛-qubit density
matrix 𝜎.

Hybrid 𝖧1. Sample 𝑘 ← {0, 1}𝜆. Compute 𝜎 ← 𝖤𝗇𝖼𝜆(𝑘, 𝑥). The output of the hybrid is the
output of the adversary 𝐴𝜆 on input 𝜎⊗𝑡.

Hybrid 𝖧2. Consider the following QPT algorithm 𝐵𝜆: it takes as input (𝑖1, 𝑏1), . . . , (𝑖ℓ, 𝑏ℓ) ∈
[ℓ]× {0, 1} and a 𝑡𝑛-qubit state 𝜎⊗𝑡1 ⊗ · · · ⊗ 𝜎

⊗𝑡
ℓ . The algorithm 𝐵 runs the adversary 𝐴𝜆 on input

(𝜎1 ⊗ · · · ⊗ 𝜎ℓ)⊗𝑡 and returns A𝜆’s output.
Sample 𝑘 ← {0, 1}𝜆. Compute 𝑡 copies of 𝜎 ← 𝖤𝗇𝖼𝜆(𝑘, 𝑥). The output of this hybrid is the

output of 𝐵𝜆 on input ((1, 𝑥1), . . . , (ℓ, 𝑥ℓ)) and 𝜎⊗𝑡 = 𝜎⊗𝑡1 ⊗ · · · ⊗ 𝜎
⊗𝑡
ℓ .

Hybrid 𝖧3. Sample 𝑡 copies of Haar-random states |𝜗1⟩ , . . . , |𝜗ℓ⟩ ← H𝑛. The output of this
hybrid is the output of 𝐵𝜆 on input ((1, 𝑥1), . . . , (ℓ, 𝑥ℓ)) and |𝜗1⟩⊗𝑡 ⊗ · · · ⊗ |𝜗ℓ⟩⊗𝑡.

We now argue the indistinguishability of the hybrids. Clearly, hybrids 𝖧1 and 𝖧2 are identical
by construction (the adversary 𝐵𝜆 ignores its first input and runs 𝐴𝜆 on input 𝜎⊗𝑡). Hybrids 𝖧2

and 𝖧3 are indistinguishable because of the pseudorandomness property of the PRFS generator 𝐺.
Notice that, by construction, the output of hybrid 𝖧3 is 𝐴𝜆((|𝜗1⟩ ⊗ · · · ⊗ |𝜗ℓ⟩)⊗𝑡).

6 Quantum Bit Commitments from PRFS

6.1 Definition

We consider the notion of quantum commitment scheme with statistical binding and computational
hiding property. This is analogous to a classical commitment scheme where the messages are
allowed to be quantum states. We in particular focus on bit commitments where the the committed
message is a single bit. We can generically achieve commitments of long messages by composing
many instantiations of the bit-commitment scheme in parallel.

A (bit) commitment scheme is given by a pair of (uniform) QPT algorithms (𝐶,𝑅), where
𝐶 = {𝐶𝜆}𝜆∈ℕ is called the committer and 𝑅 = {𝑅𝜆}𝜆∈ℕ is called the receiver. There are two phases
in a commitment scheme: a commit phase and a reveal phase.

• In the (possibly interactive) commit phase between 𝐶𝜆 and 𝑅𝜆, the committer 𝐶𝜆 commits to
a bit, say 𝑏. We denote the execution of the commit phase to be 𝜎𝐶𝑅 ← 𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶𝜆(𝑏), 𝑅𝜆⟩,
where 𝜎𝐶𝑅 is a joint state of 𝐶𝜆 and 𝑅𝜆 after the commit phase.

• In the reveal phase 𝐶𝜆 interacts with 𝑅𝜆 and the output is a trit 𝜇 ∈ {0, 1,⊥} indicating the
receiver’s output bit or a rejection flag. We denote an execution of the reveal phase where the
committer and receiver start with the joint state 𝜎𝐶𝑅 by 𝜇← 𝖱𝖾𝗏𝖾𝖺𝗅⟨𝐶𝜆, 𝑅𝜆, 𝜎𝐶𝑅⟩.

We define the properties satisfied by a commmitment scheme.
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Statistical Binding. We start by discussing the statistical binding property. The classical statis-
tical binding property could be rephrased as the following in the quantum setting: for any adversarial
(possibly unbounded) committer 𝐶*𝜆, we require that at the end of the commit phase, with high
probability over the measurement randomness of the receiver, there is a unique bit that 𝐶*𝜆 can
decommit to in the reveal phase. Unfortunately, this idealistic notion is not always possible to
achieve: in some quantum commitment protocols where the receiver does not measure everything,
it is possible for 𝐶*𝜆 to send a uniform superposition of commitments of 0 and 1 and later can open
to either 0 or 1 with equal probability. This attack was observed and taken into account in many
works, including but not limited to [YWLQ15, Unr16, FUYZ20, BB21].

To account for this issue, we consider a notion where an extraction procedure can be applied on
the state of the receiver after the commit phase. The output is the receiver’s post-extraction state
along with the extracted bit 𝑏. We revise the statistical binding property guarantee to informally
require the following: (a) whether the extractor is applied or not is imperceivable to the committer
and (b) the committer can almost never decommit to 1− 𝑏 if the extracted bit is 𝑏.

Definition 6.1 (Statistical Binding). We say that a quantum commitment scheme (𝐶,𝑅) satisfies
statistical binding if for any (non-uniform) adversarial committer 𝐶* = {𝐶*𝜆}𝜆∈ℕ, there exists a
(possibly inefficient) extractor algorithm ℰ such that the following holds:

TD
(︁
𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶

*
𝜆 , 𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶

*,ℰ
𝜆

)︁
≤ 𝜈(𝜆),

for some negligible function 𝜈(𝜆), where the experiments 𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*

𝜆 and 𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*,ℰ

𝜆 are defined
as follows.

• 𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*

𝜆 : Execute the commit phase to obtain the joint state 𝜎𝐶*𝑅 ← 𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶*𝜆, 𝑅𝜆⟩.
Execute the reveal phase to obtain the trit 𝜇← 𝖱𝖾𝗏𝖾𝖺𝗅⟨𝐶*𝜆, 𝑅𝜆, 𝜎𝐶*𝑅⟩. Output the pair (𝜏𝐶* , 𝜇)
where 𝜏𝐶* is the final state of the committer.

• 𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*,ℰ

𝜆 : Execute the commit phase to obtain the joint state 𝜎𝐶*𝑅 ← 𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶*𝜆, 𝑅𝜆⟩.
Apply the extractor 𝐼 ⊗ ℰ on 𝜎𝐶*𝑅 (acting only on the receiver’s part) to obtain a new joint
committer-receiver state 𝜎′𝐶*𝑅 along with 𝑏′ ∈ {0, 1,⊥}. Execute the reveal phase to obtain
the trit 𝜇 ← 𝖱𝖾𝗏𝖾𝖺𝗅⟨𝐶*𝜆, 𝑅𝜆, 𝜎′𝐶*𝑅⟩. Let 𝜏𝐶* denote the final state of the committer. If 𝜇 = ⊥
or 𝜇 = 𝑏′, then output (𝜏𝐶* , 𝜇). Otherwise, output a special symbol E (unused in the real
experiment) indicating extraction error.

Remark 6.2. Many prior works consider statistical binding for quantum commitments. We highlight
the main differences between our definition and the prior notions.

• Comparison with [YWLQ15, Unr16, FUYZ20]: the statistical binding property is formalized
by requiring the states of the (honest) committer when committing to bits 0 and 1 to be far
in trace distance. While their definition is cleaner (and probably equivalent to our notion),
in our opinion, it is unwieldy to use their definition for applications. Specifically, one has to
either implicitly or explicitly come up with an extractor in the security proofs for applications
[YWLQ15, FUYZ20] and moreover, show that the indistinguishability of the real and the ideal
world holds against dishonest committers. On the other hand, we incorporate these technical
difficulties as requirements in our definition making it easier to use in applications.

Another downside of the statistical binding property there is that in order for the sum-binding
property to be useful in applications, it is common to additionally require the opening phase to

29



follow the “canonical” opening protocol, where the committer sends the purification of the mixed
state sent in the committing phase, and the receiver performs a rank-1 projection to check the
state. This implies that both parties must keep their part of the state coherent between the two
phases. However, our definition gives the flexibility of the reveal phase having purely classical
communication.

• Comparison with [BB21]: A related work by [BB21] considers statistical binding of quantum
commitments called classical binding. The main difference is the following. In their notion, the
honest receiver applies a measurement that collapses the commitment into a quantum state and
a classical string in such a way that the classical string information theoretically determines
the message. They then use this feature to show that in some applications, the opening of the
commitment can be classical. Our definition is also more general in the sense that the honest
receiver is not required to do any measurement and the collapsing happens implicitly in the
ideal world during the execution of extractor.

Remark 6.3. One has to be careful when using quantum commitments in a larger system if the
receiver’s state is quantum after the commit phase. As an example, suppose we design a protocol
where the quantum commitment held by the receiver before the reveal phase is used inside another
cryptographic protocol. Then we might not be able to invoke binding if the state is destroyed, whereas
classically the state could always be copied. Nevertheless, this is a generic caveat of quantum com-
mitments and is not an artifact of any specific definition of binding.

Computational Hiding. We define the computational hiding property below. This is the natural
quantum analogue of the classical computational hiding property. In the literature, this property is
also sometimes referred to as quantum concealing.

Definition 6.4 (Computational Hiding). We say that a quantum commitment scheme (𝐶,𝑅) sat-
isfies computational hiding if for any malicious QPT receiver {𝑅*𝜆}𝜆∈ℕ, for any QPT distinguisher
{𝐷𝜆}𝜆∈ℕ, the following holds:⃒⃒⃒⃒

Pr [𝐷𝜆(𝜎𝑅*) = 1 : 𝜎𝐶𝑅* ← 𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶𝜆(0), 𝑅*𝜆⟩]

− Pr [𝐷𝜆(𝜎𝑅*) = 1 : 𝜎𝐶𝑅* ← 𝖢𝗈𝗆𝗆𝗂𝗍⟨𝐶𝜆(1), 𝑅*𝜆⟩]
⃒⃒⃒⃒
≤ 𝜈(𝜆),

for some negligible function 𝜈(·), where 𝜎𝑅* is obtained by tracing out the committer’s part of the
state 𝜎𝐶𝑅*.

6.2 Construction

We now present the main theorem of this section, which shows that statistically binding quantum
commitment schemes can be constructed from PRFS.

Theorem 6.5. Assuming the existence of (𝑑(𝜆), 𝑛(𝜆))-PRFS satisfying recognizable abort (Defini-
tion 3.5) with 2𝑑 · 𝑛 ≥ 7𝜆, there exists a commitment scheme satisfying statistical completeness,
statistical binding (Definition 6.1) and computational hiding (Definition 6.4).
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We note that, combined with Theorem 4.1 which constructs PRFS generators with Ω(log 𝜆) input
length and recognizable abort property from PRS generators, we can obtain quantum commitment
schemes from PRS generators. We present the construction, which is inspired by Naor’s commitment
scheme [Nao91].

The main building block is a (𝑑(𝜆), 𝑛(𝜆))-PRFS, denoted by 𝐺 = {𝐺𝜆(·, ·)}𝜆∈ℕ. Since 𝑛 ≥ 1,
we assume 𝑑(𝜆) = ⌈log 7𝜆

𝑛 ⌉ = 𝑂(log 𝜆) to ensure the efficiency of the algorithm. This is without loss
of generality since we can generically shrink the input length for a PRFS by padding zeroes. Let
𝖳𝖾𝗌𝗍⊗2

𝑑(𝜆)

𝜆 be the product PRFS tester corresponding to 𝐺 as guaranteed by Corollary 3.9.
We describe the commitment scheme, (𝐶,𝑅) as follows. For notational convenience, we abbre-

viate 𝑛 = 𝑛(𝜆), 𝑑 = 𝑑(𝜆).

1. Commit Phase:

• The receiver 𝑅𝜆 samples a uniformly random 𝑚-qubit Pauli operator 𝑃 , where 𝑚 = 2𝑑 ·𝑛.
We write 𝑃 as 𝑃0 ⊗ · · · ⊗ 𝑃2𝑑−1, where 𝑃𝑖 is an 𝑛-qubit Pauli operator11. It sends 𝑃 to
the committer.

• The committer 𝐶𝜆 on input a bit 𝑏 ∈ {0, 1}, does the following:

– It samples 𝑘 $←− {0, 1}𝜆.
– For every 𝑥 ∈ {0, 1}𝑑, computes 𝜎𝑘,𝑥 ← 𝐺𝜆(𝑘, 𝑥).

It sends the commitment 𝐜 =
⨂︀

𝑥∈{0,1}𝑑 ̃︀𝜎𝑘,𝑥, where ̃︀𝜎𝑘,𝑥 = 𝑃 𝑏𝑥𝜎𝑘,𝑥𝑃
𝑏
𝑥, to the receiver.

2. Reveal Phase: The committer sends (𝑘, 𝑏) ∈ {0, 1}𝜆 × {0, 1} as the decommitment to the
receiver. The receiver outputs 𝑏 if and only if 𝖳𝖾𝗌𝗍⊗2

𝑑

𝜆

(︀
{𝑘, 𝑥}𝑥, 𝑃 𝑏𝐜𝑃 𝑏

)︀
= 1 where 𝑃 𝑏 =⨂︀

𝑥∈{0,1}2𝑑 𝑃
𝑏
𝑥. Otherwise the receiver outputs ⊥.

Lemma 6.6. If 𝐺 is a PRFS, then there exists a negligible function 𝜈(·) such that the probability
that the honest receiver accepts the honest committer’s opening is at least 1− 𝜈(𝜆).

Proof. This follows immediately from Lemma 3.10 and union bound as 2𝑑 is polynomial in 𝜆.

Lemma 6.7. If 𝐺 is a PRFS, then (𝐶,𝑅) satisfies computational hiding as defined in Definition 6.4.

Proof. This follows from a standard hybrid argument. Let 𝑅* be a QPT receiver.

Hybrid 𝖧1. This corresponds to 𝐶 committing to the bit 𝑏 = 0. In more details, let 𝑃 =⨂︀
𝑥∈{0,1}𝑑 𝑃𝑥. be the Pauli sent by 𝑅* to 𝐶. Then, 𝐶 computes 𝜎𝑘,𝑥 ← 𝐺𝜆(𝑘, 𝑥), for every

𝑥 ∈ {0, 1}𝑑. 𝐶 sends 𝐜 =
⨂︀

𝑥∈{0,1}𝑑(𝜆) ̃︀𝜎𝑘,𝑥, where ̃︀𝜎𝑘,𝑥 = 𝜎𝑘,𝑥 to 𝑅*.

Hybrid 𝖧2. This hybrid is the same as before, except that 𝜎𝑘,𝑥 = |𝜗𝑥⟩⟨𝜗𝑥|, where |𝜗1⟩ , . . . , |𝜗2𝑑⟩ ←
H𝑛.

The output distributions of 𝖧1 and 𝖧2 are computationally indistinguishable from the security
of PRFS {𝐺𝜆 (·, ·)}𝜆∈ℕ.

11To sample 𝑃 =
⨂︀

𝑖 𝑃𝑖, the receiver can sample uniformly random bits 𝛼1, 𝛽1, . . . , 𝛼𝑚, 𝛽𝑚, and let 𝑃𝑖 = 𝑋𝛼𝑖𝑍𝛽𝑖

where 𝑋 and 𝑍 are the single-qubit Pauli operators.
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Hybrid 𝖧3. This hybrid is the same as before, except that ̃︀𝜎𝑘,𝑥 = 𝑃𝑥𝜎𝑘,𝑥𝑃𝑥. That is, the operator
𝑃 𝑏 is applied to 𝜎𝑘,𝑥.

The output distributions of 𝖧2 and 𝖧3 are identical by unitary invariance of Haar random states.

Hybrid 𝖧4. This corresponds to 𝐶 committing to the bit 𝑏 = 1. In more detail, let 𝑃 be the
Pauli sent by 𝑅* to 𝐶. Then, 𝐶 computes 𝜎𝑘,𝑥 ← 𝐺𝜆(𝑘, 𝑥), for every 𝑥 ∈ {0, 1}𝑑. 𝐶 sends
𝐜 =

⨂︀
𝑥∈{0,1}𝑑(𝜆) ̃︀𝜎𝑘,𝑥, where ̃︀𝜎𝑘,𝑥 = 𝑃𝑥𝜎𝑘,𝑥𝑃𝑥 to 𝑅*.

The output distributions of 𝖧3 and 𝖧4 are computationally indistinguishable from the security
of PRFS 𝐺.

Statistical binding. The rest of the section will be devoted to proving statistical binding of
the construction. For this part, we explicitly assume recognizable abort to simplify the analysis.
However, we believe that with some more work, our construction would still satisfy binding even if
a more generic PRFS is used.

Lemma 6.8. (𝐶,𝑅) satisfies 𝑂(2−𝜆)-statistical binding if the (𝑑, 𝑛)-PRFS satisfies recognizable
abort property and 2𝑛 · 𝑑 ≥ 7𝜆.

Let 𝐶* = {𝐶*𝜆}𝜆∈ℕ be an malicious committer. Suppose 𝐶*𝜆 executes the commit phase with the
honest receiver 𝑅𝜆. Let 𝐜 denote the mixed state sent by 𝐶* to 𝑅.

We first describe the extractor.

Description of ℰ. On input the commitment 𝐜, the extractor ℰ obtains the description of the
Pauli matrix 𝑃 from the receiver’s state, and performs general measurement Λ whose operators are
{
√
Λ0,
√
Λ1,
√
Λ⊥}, where Λ0,Λ1,Λ⊥ are positive semi-definite operators defined as follows:

• Define 𝑇0 to be the subspace spanned by
{︁⨂︀

𝑥∈{0,1}2𝑑 |𝜓𝑘,𝑥⟩⟨𝜓𝑘,𝑥| : ∀𝑘 ∈ {0, 1}𝜆
}︁

, where the
states |𝜓𝑘,𝑥⟩ are pure states guaranteed by Definition 3.5. Let Π0 be a projection that projects
onto 𝑇0.

• Define 𝑇1 to be the subspace spanned by
{︁
𝑃
⨂︀

𝑥∈{0,1}2𝑑 |𝜓𝑘,𝑥⟩⟨𝜓𝑘,𝑥|𝑃 : ∀𝑘 ∈ {0, 1}𝜆
}︁

. Let
Π1 be a projection that projects onto 𝑇1. Note that Π1 = 𝑃Π0𝑃 by definition.

• Let 𝑝 = ‖Π0 +Π1‖ (i.e. the maximum eigenvalue of Π0+Π1), Λ0 = 𝑝−1 ·Π0, and Λ1 = 𝑝−1 ·Π1.
Define Λ⊥ = 𝐼 − (Λ0 +Λ1). Since Π0 and Π1 are projections,

√
Λ0 and

√
Λ1 are well defined.

By definition, Λ0 + Λ1 = 𝑝−1(Π0 + Π1) ≼ 𝐼 and therefore Λ⊥ is positive-semidefinite. Thus√
Λ⊥ is also well-defined.

Let the measurement outcome be 𝑏′ ∈ {0, 1,⊥} and let the post-measurement state be denoted
by 𝐜′ after applying the general measurement {

√
Λ0,
√
Λ1,
√
Λ⊥}. The extractor ℰ outputs (𝐜′, 𝑏′).

This completes the description of the extractor.

Fact 6.9. Let |𝜑⟩ and |𝜓⟩ be two arbitrary 𝑚-qubit states. Let 𝒫𝑚 be the 𝑚-qubit Pauli group.
Then,

𝔼
𝑃←𝒫𝑚

[︁
|⟨𝜓|𝑃 |𝜑⟩|2

]︁
= 2−𝑚.
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Proof. We first observe that |⟨𝜓|𝑃 |𝜑⟩|2 = Tr (𝑃 |𝜓⟩⟨𝜓|𝑃 |𝜑⟩⟨𝜑|); this follows from the fact that the
trace of an outer product of two vectors is equivalent to the square of their inner product.

We also use the following fact from [MTW00]: for any 𝑚-qubit density matrix 𝜌,

𝔼𝑃←𝒫𝑚 [𝑃𝜌𝑃 ] =
𝐼

2𝑚
. (6)

This implies that for all states |𝜓⟩ , |𝜑⟩,

𝔼𝑃←𝒫𝑚

[︁
|⟨𝜓|𝑃 |𝜑⟩|2

]︁
= 𝔼𝑃←𝒫𝑚 [Tr (𝑃 |𝜓⟩⟨𝜓|𝑃 |𝜑⟩⟨𝜑|)]

= Tr (𝔼𝑃←𝒫𝑚 [𝑃 |𝜓⟩⟨𝜓|𝑃 |𝜑⟩⟨𝜑|]) (from linearity of 𝔼)
= Tr (𝔼𝑃←𝒫𝑚 [𝑃 |𝜓⟩⟨𝜓|𝑃 ] · |𝜑⟩⟨𝜑|)

= Tr

(︂
𝐼

2𝑚
· |𝜑⟩⟨𝜑|

)︂
(from (6))

=
1

2𝑚
· Tr (|𝜑⟩⟨𝜑|)

=
1

2𝑚

as desired.

Lemma 6.10 (Almost orthogonality of Π0 and Π1).

Pr
𝑃←𝒫𝑚

[︁
𝑝 ≥ 1 + 3 · 2−(𝑚−4𝜆)/3

]︁
≤ 2−(𝑚−4𝜆)/3.

Proof. Let |𝜓⟩ be an arbitrary 𝑚-qubit pure state. Write |𝜓⟩ = |𝛼⟩+ |𝛽⟩, where |𝛼⟩ is the projection
of |𝜓⟩ onto the subspace 𝑇0, and |𝛽⟩ is the projection of |𝜓⟩ onto the orthogonal complement of 𝑇0.
We determine an upper bound for the following quantity:

⟨𝜓| (Π0 +Π1) |𝜓⟩ = (⟨𝛼|+ ⟨𝛽|) (Π0 +Π1) (|𝛼⟩+ |𝛽⟩)
= (⟨𝛼|+ ⟨𝛽|) (|𝛼⟩+Π1 |𝛼⟩+Π1 |𝛽⟩)
= ⟨𝛼|𝛼⟩+ ⟨𝛼|Π1 |𝛽⟩+ ⟨𝛽|Π1 |𝛼⟩+ ⟨𝛽|Π1 |𝛽⟩+ ⟨𝛼|Π1|𝛼⟩
≤ ⟨𝛼|𝛼⟩+ ⟨𝛽|𝛽⟩+ 2 |⟨𝛼|Π1 |𝛽⟩|+ ⟨𝛼|Π1|𝛼⟩
= 1 + 2 |⟨𝛼|Π1 |𝛽⟩|+ ⟨𝛼|Π1|𝛼⟩

= 1 + 2
√︀
⟨𝛼|Π1|𝛽⟩ ⟨𝛽|Π1|𝛼⟩+ ⟨𝛼|Π1|𝛼⟩

≤ 1 + 2
√︀
⟨𝛼|Π1|𝛼⟩+ ⟨𝛼|Π1|𝛼⟩

≤ 1 + 3
√︀
⟨𝛼|Π1|𝛼⟩

≤ 1 + 3
√︀
Tr(Π0Π1)

where we used the fact that since |𝛼⟩ is contained in the support of Π0, we have |𝛼⟩⟨𝛼| ⪯ Π0 and
thus Tr(|𝛼⟩⟨𝛼| Π1) ≤ Tr(Π0Π1).

We now estimate the quantity Tr(Π0Π1). Let {|𝑢1⟩ , . . . , |𝑢dim(𝑇0)⟩} be an orthonormal basis of
𝑇0, so that Π0 =

∑︀dim(𝑇0)
𝑖=1 |𝑢𝑖⟩⟨𝑢𝑖|. Using that Π1 = 𝑃Π0𝑃 and cyclicity of trace, we have

Tr(Π0Π1) =

dim(𝑇0)∑︁
𝑖,𝑗=1

⟨𝑢𝑗 |𝑃 |𝑢𝑖⟩⟨𝑢𝑖|𝑃 |𝑢𝑗⟩ ≤ 22𝜆 ·max
𝑖,𝑗
| ⟨𝑢𝑖|𝑃 |𝑢𝑗⟩ |2
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where we used that dim(𝑇0) ≤ 2𝜆.
Now, applying Fact 6.9 to | ⟨𝑢𝑖|𝑃 |𝑢𝑗⟩ |2 and using Markov’s inequality we get that for each

𝑖, 𝑗 ∈ [dim(𝑇0)] we have for all 𝛿 > 0,

Pr
𝑃←𝒫𝑚

[︀
| ⟨𝑢𝑖|𝑃 |𝑢𝑗⟩ |2 ≥ 𝛿

]︀
≤ 𝛿−12−𝑚.

Using a union bound over all 𝑖, 𝑗,

Pr
𝑃←𝒫𝑚

[︀
∃ 𝑖, 𝑗 : | ⟨𝑢𝑖|𝑃 |𝑢𝑗⟩ |2 ≥ 𝛿

]︀
≤ 𝛿−122𝜆−𝑚

which implies
Pr

𝑃←𝒫𝑚

[︁
Tr(Π0Π1) ≥ 𝛿 22𝜆

]︁
≤ 𝛿−1 22𝜆−𝑚 .

Putting everything together, since for all |𝜓⟩ the quantity ⟨𝜓| (Π0 +Π1) |𝜓⟩ is upper-bounded by a
quantity that only depends on Tr(Π0Π1) which only depends on 𝑃 , we get

Pr
𝑃←𝒫𝑚

[︂
max
|𝜓⟩
{⟨𝜓| (Π0 +Π1) |𝜓⟩} ≥ 1 + 3

√
𝛿 2𝜆

]︂
≤ 𝛿−1 22𝜆−𝑚 .

Setting 𝛿 = 22(𝜆−𝑚)/3 we get the desired lemma statement.

Indistinguishability of Real World and Ideal World. We need to show that the output
distributions of 𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶

*
𝜆 and 𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶

*,ℰ
𝜆 as defined in Definition 6.1 are statistically indistin-

guishable.

To argue this, we set up some notation.

• We assume that after the commit phase, the random Pauli 𝑃 sent by 𝑅 in the first message
and 𝐶*’s decommitment (𝑘, 𝑏) are obtained by measuring some registers of their joint state.
Let 𝜎𝖷𝖸 denote the joint state of 𝐶* and 𝑅 after the commit phase, conditioned on the Pauli
𝑃 and the decommitment (𝑘, 𝑏). The register 𝖷 denotes 𝐶*’s private register and 𝖸 denotes
𝑅’s private register.

• Let 𝜌𝗋𝖾𝖺𝗅 denote the output of 𝖱𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*

𝜆 . If 𝑏 = ⊥, then 𝜌𝗋𝖾𝖺𝗅 = (𝜎𝖷, |⊥⟩⟨⊥|). Otherwise,
since the 𝖳𝖾𝗌𝗍⊗2

𝑑

𝜆 is being applied to register 𝖸 of 𝑃 𝑏𝜎𝖷𝖸𝑃 𝑏 (where 𝑃 𝑏 is applied to register
𝖷), we have

𝜌𝗋𝖾𝖺𝗅 = 𝔼
𝑃,𝑘,𝑏

Tr𝖸

(︁
𝖳𝖾𝗌𝗍⊗2

𝑑

𝜆 ({𝑘, 𝑥}𝑥, 𝑃 𝑏𝜎𝖷𝖸𝑃 𝑏)
)︁

= 𝔼
𝑃,𝑘,𝑏

Tr𝖸

(︁
𝑀0𝑃

𝑏𝜎𝑃 𝑏
)︁
⊗ |𝑏⟩⟨𝑏|+Tr𝖸

(︁
𝑀⊥𝑃

𝑏𝜎𝑃 𝑏
)︁
⊗ |⊥⟩⟨⊥|

where 𝑀0 = 𝜂2 |𝜓⟩⟨𝜓| and 𝑀⊥ = 𝐼−𝑀0 are positive semi-definite operators acting on register
𝖸 with 𝜂, |𝜓⟩ given by Corollary 3.9. The expectation is over the choice of random Pauli 𝑃
and decommitment (𝑘, 𝑏).
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• Let 𝜌𝗂𝖽𝖾𝖺𝗅 denote the output of 𝖨𝖽𝖾𝖺𝗅𝖤𝗑𝗉𝗍𝐶
*,ℰ

𝜆 . If 𝑏 = ⊥, then by definition of the ideal exper-
iment, the output is (𝜎𝖷, |⊥⟩⟨⊥|). Otherwise, the general measurement {

√
Λ0,
√
Λ1,
√
Λ⊥} is

performed first on register 𝖸 of the state 𝜎𝖷𝖸 to yield outcome 𝑎 ∈ {0, 1,⊥}. Conditioned on
outcome 𝑎 the post-measurement state is

√
Λ𝑎𝜎
√
Λ𝑎

Tr(Λ𝑎𝜎)
.

The Pauli operator 𝑃 𝑏 and then the 𝖳𝖾𝗌𝗍⊗2
𝑑

𝜆 circuit is applied to register 𝖸 (corresponding
to the reveal phase); if the test accepts and the decommitted bit 𝑏 matches the output 𝑎 of
the extractor, then the register 𝖷 and |𝜇⟩⟨𝜇| are output. If the bits do not match then the
outcome is |E⟩⟨E|. Otherwise the register 𝖷 and |⊥⟩⟨⊥| are output. Put together, we get

𝜌𝗂𝖽𝖾𝖺𝗅 = 𝔼
𝑃,𝑘,𝑏

[Tr𝖸(𝑁𝑏𝜎)⊗ |𝑏⟩⟨𝑏|+Tr𝖸(𝑁⊥𝜎)⊗ |⊥⟩⟨⊥|+Tr𝖸(𝑁E𝜎)⊗ |E⟩⟨E|]

where 𝑁𝑏 =
√
Λ𝑏𝑃

𝑏𝑀0𝑃
𝑏
√
Λ𝑏, 𝑁E =

√︀
Λ1−𝑏𝑃

𝑏𝑀0𝑃
𝑏
√︀
Λ1−𝑏, and 𝑁⊥ = 𝐼 −𝑁𝑏 −𝑁E. To see

that this is correct in the case that the ideal experiment where the receiver accepts, consider
that the post-measurement state of the extractor measurement, conditioned on obtaining
outcome 𝑏, is

√
Λ𝑏𝜎
√
Λ𝑏

Tr(Λ𝑏𝜎)
. Applying 𝑃 𝑏, conditioning on 𝖳𝖾𝗌𝗍⊗2

𝑑

𝜆 accepting, and then tracing out
the register 𝖸 yields the state

Tr𝖸

(︁
𝑀0

(︁
𝑃 𝑏
√︀
Λ𝑏𝜎

√︀
Λ𝑏𝑃

𝑏
)︁)︁
.

Note that all the operators 𝑀0, 𝑃
𝑏,
√
Λ𝑏 all act on the register 𝖸, and the partial trace over

𝖸 is cyclic with respect to such operators. Thus this is equal to Tr𝖸(𝑁𝑏𝜎).

We now prove Lemma 6.8.

Proof of Lemma 6.8. Write

𝜌𝗋𝖾𝖺𝗅 = 𝔼
𝑃,𝑘,𝑏

[︁
𝜏
(𝑏)
𝗋𝖾𝖺𝗅 ⊗ |𝑏⟩⟨𝑏|+ 𝜏

(⊥)
𝗋𝖾𝖺𝗅 ⊗ |⊥⟩⟨⊥|

]︁
𝜌𝗂𝖽𝖾𝖺𝗅 = 𝔼

𝑃,𝑘,𝑏

[︁
𝜏
(𝑏)
𝗂𝖽𝖾𝖺𝗅 ⊗ |𝑏⟩⟨𝑏|+ 𝜏

(⊥)
𝗂𝖽𝖾𝖺𝗅 ⊗ |⊥⟩⟨⊥|+ 𝜏

(E)
𝗂𝖽𝖾𝖺𝗅 ⊗ |E⟩⟨E|

]︁
for subnormalized density matrices 𝜏 (·)𝗋𝖾𝖺𝗅, 𝜏

(·)
𝗂𝖽𝖾𝖺𝗅, 𝜏

(E)
𝗂𝖽𝖾𝖺𝗅 = Tr𝖸(𝑁E𝜎) which implicitly depend on 𝑃, 𝑘, 𝑏.

Since the trace distance is jointly convex we have

TD(𝜌𝗋𝖾𝖺𝗅, 𝜌𝗂𝖽𝖾𝖺𝗅)

≤ 𝔼
𝑃,𝑘,𝑏

TD
(︁
𝜏
(𝑏)
𝗋𝖾𝖺𝗅 ⊗ |𝑏⟩⟨𝑏|+ 𝜏

(⊥)
𝗋𝖾𝖺𝗅 ⊗ |⊥⟩⟨⊥| , 𝜏

(𝑏)
𝗂𝖽𝖾𝖺𝗅 ⊗ |𝑏⟩⟨𝑏|+ 𝜏

(⊥)
𝗂𝖽𝖾𝖺𝗅 ⊗ |⊥⟩⟨⊥|+ 𝜏

(E)
𝗂𝖽𝖾𝖺𝗅 ⊗ |E⟩⟨E|

)︁
= 𝔼

𝑃,𝑘,𝑏

[︁
TD

(︁
𝜏
(𝑏)
𝗋𝖾𝖺𝗅, 𝜏

(𝑏)
𝗂𝖽𝖾𝖺𝗅

)︁
+TD

(︁
𝜏
(⊥)
𝗋𝖾𝖺𝗅 , 𝜏

(⊥)
𝗂𝖽𝖾𝖺𝗅

)︁
+Tr(𝜏

(E)
𝗂𝖽𝖾𝖺𝗅)

]︁
.

Define 𝜇 = Tr(𝜏
(E)
𝗂𝖽𝖾𝖺𝗅). Using that 𝑀⊥ = 𝐼 −𝑀0 and 𝑁⊥ = 𝐼 −𝑁𝑏 −𝑁E and that the partial trace

is cyclic with respect to operators acting on 𝖸 only, we have

TD
(︁
𝜏
(⊥)
𝗋𝖾𝖺𝗅 , 𝜏

(⊥)
𝗂𝖽𝖾𝖺𝗅

)︁
= TD

(︁
Tr𝖸

(︁
𝑀⊥𝑃

𝑏𝜎𝑃 𝑏
)︁
,Tr𝖸

(︁
𝑁⊥𝜎

)︁)︁
= TD

(︁
Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁
,Tr𝖸

(︁
(𝑁𝑏 +𝑁E)𝜎

)︁)︁
≤ TD

(︁
𝜏
(𝑏)
𝗋𝖾𝖺𝗅, 𝜏

(𝑏)
𝗂𝖽𝖾𝖺𝗅

)︁
+ 𝜇.
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Thus to prove the Lemma it suffices to prove that the following statement is true: for all 𝑘 ∈ {0, 1}𝜆
and 𝑏 ∈ {0, 1},

𝔼
𝑃←𝒫𝑚

[︁
TD

(︁
𝜏
(𝑏)
𝗋𝖾𝖺𝗅, 𝜏

(𝑏)
𝗂𝖽𝖾𝖺𝗅

)︁
+ 𝜇

]︁
≤ 5

2𝜆
. (7)

Fix a decommitment (𝑘, 𝑏). Recall that 𝑀0 = 𝜂2 |𝜓⟩⟨𝜓| where |𝜓⟩ =
⨂︀

𝑥 |𝜓𝑘,𝑥⟩, and that
Λ𝑏 = 𝑝−1 ·Π𝑏. Then

𝑁𝑏 =
√︀
Λ𝑏𝑃

𝑏𝑀0𝑃
𝑏
√︀

Λ𝑏

= 𝜂2 𝑝−1
√︀
Π𝑏𝑃

𝑏 |𝜓⟩⟨𝜓|𝑃 𝑏
√︀
Π𝑏

= 𝜂2 𝑝−1Π𝑏 𝑃
𝑏 |𝜓⟩⟨𝜓|𝑃 𝑏Π𝑏

where we use the fact that
√
Π𝑏 = Π𝑏 since it is a projector. Since Π𝑏 projects onto the span of

{𝑃 𝑏
⨂︀

𝑥 |𝜓𝑘,𝑥⟩ : 𝑘 ∈ {0, 1}
𝜆}, this means that Π𝑏𝑃

𝑏 |𝜓⟩ = 𝑃 𝑏 |𝜓⟩, so 𝑁𝑏 is equal to

𝜂2 𝑝−1 𝑃 𝑏 |𝜓⟩⟨𝜓|𝑃 𝑏 = 𝑝−1𝑃 𝑏𝑀0𝑃
𝑏 .

This means that

𝔼
𝑃←𝒫𝑚

TD
(︁
𝜏
(𝑏)
𝗋𝖾𝖺𝗅, 𝜏

(𝑏)
𝗂𝖽𝖾𝖺𝗅

)︁
= 𝔼

𝑃←𝒫𝑚

TD
(︁
Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁
,Tr𝖸

(︁
𝑁𝑏𝜎

)︁)︁
= 𝔼

𝑃←𝒫𝑚

TD
(︁
Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁
, 𝑝−1Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁)︁

(8)

If 𝑝 (which is a function of 𝑃 ) is at most 1 + 3 · 2−(4𝜆−𝑚)/3 then we say 𝑝 is good, otherwise it is
bad. By Lemma 6.10 𝑝 is bad with probability at most 2−(𝑚−4𝜆)/3. When 𝑝 is good, we have

TD
(︁
Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁
, 𝑝−1Tr𝖸

(︁
𝑃 𝑏𝑀0𝑃

𝑏𝜎
)︁)︁
≤ 1− 𝑝−1 ≤ 3 · 2−(4𝜆−𝑚)/3

where we used that TD
(︀
𝜙, 𝑝−1𝜙

)︀
≤ 1− 𝑝−1 ≤ 𝑝− 1 for all subnormalized density matrices 𝜙.

On the other hand, similarly we have

𝑁E =
√︀
Λ1−𝑏𝑃

𝑏𝑀0𝑃
𝑏
√︀
Λ1−𝑏

= 𝜂2𝑝−1Π1−𝑏𝑃
𝑏 |𝜓⟩⟨𝜓|𝑃 𝑏Π1−𝑏

= 𝜂2𝑝−1𝑃 1−𝑏Π0𝑃 |𝜓⟩⟨𝜓|𝑃Π0𝑃
1−𝑏,

where we use the same facts as before and in addition Π𝑖 = 𝑃 𝑖Π0𝑃
𝑖 for 𝑖 = 0, 1. Since Tr(𝜎) = 1,

𝑝 ≥ 1 and 𝜂2 ≤ 1,

𝜇 = Tr(𝑁E𝜎)

≤ ‖𝑁E‖Tr(𝜎)
= 𝜂2𝑝−1‖Π0𝑃 |𝜓⟩⟨𝜓|𝑃Π0‖
≤ ⟨𝜓|𝑃Π0𝑃 |𝜓⟩ .

Thus 𝔼𝑃←𝒫𝑚 𝜇 ≤ 2𝜆−𝑚 by the dimensionality of Π0.
Therefore by (8), LHS of (7) is at most

3 · 2−(𝑚−4𝜆)/3 + 2−(𝑚−4𝜆)/3 + 2−(𝑚−𝜆) ≤ 4 · 2−(𝑚−4𝜆)/3 + 2−(𝑚−𝜆).

Averaging over 𝑘, 𝑏, we get that TD(𝜌𝗋𝖾𝖺𝗅, 𝜌𝗂𝖽𝖾𝖺𝗅) ≤ 8 · 2−(𝑚−4𝜆)/3+2 · 2−(𝑚−𝜆), which is less than 10
2𝜆

when 𝑚 ≥ 7𝜆 as desired.
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6.3 Application: Secure Computation

In this section, we show how to base secure computation solely on the existence of a PRS. While there
are two works [BCKM21b, GLSV21] showing that post-quantum one-way functions and quantum
communication suffice to obtain protocols for secure computation, the construction of Bartusek,
Coladangelo, Khurana, and Ma [BCKM21b] has the advantage that it uses the starting commitment
scheme as a black box. We recall their main theorem.

Theorem 6.11 (Implicit from [BCKM21b]). Assuming the existence of quantum statistically bind-
ing bit commitments, maliciously secure computation protocols (in the dishonest majority setting)
for 𝑃/𝑝𝑜𝑙𝑦 exist.

Comparison of the definitions of statistical binding. The application of Theorem 6.11 would
be straightforward except for one subtlety, which is that we are using a more general definition of
the statistical binding property than required by their work. Their notion of statistical binding is
tailored to commitment schemes with classical messages as it suffices for their purposes. We first
recall their definition of statistical binding in the full version of their work [BCKM21a], and show
that it seems strictly stronger than our definition.

Definition 6.12 ([BCKM21a, Definition 3.2]). A bit commitment scheme is statistically binding if
for every unbounded-size committer 𝒞*, there exists a negligible function 𝜈(·) such that with proba-
bility at least 1 − 𝜈(𝜆) over the measurement randomness in the commitment phase, there exists a
bit 𝑏 ∈ {0, 1} such that the probability that the receiver accepts 𝑏 in the reveal phase is at most 𝜈(𝜆).

Lemma 6.13. If a commitment scheme satisfies Definition 6.12, then it also satisfies Definition 6.1.

Proof. Since a malicious committer can always “purify” his measurements via the deferred measure-
ment principle, without loss of generality we assume the only measurements in the commit phase are
only done by the honest receiver. By Definition 6.12, there exists a classical function ℰ that maps
the honest receiver’s measurement outcomes 𝑚 to a bit so that the probability that the receiver
accepts 1−ℰ(𝑚) is negligible (also known as the correctness of the extractor). As ℰ only acts on the
measurement outcome that is therefore guaranteed to be classical, ℰ commutes with the committer’s
and receiver’s operations. Furthermore, the output of ℰ is also classical by definition. Therefore, the
only difference between the real world and the ideal world is introduced by the extraction error in
the ideal world, and thus the statistical indistinguishability follows immediately by the correctness
of the extractor.

Our protocol cannot satisfy this property since the honest receiver does not measure the com-
mitter’s message in any way, and therefore in general it is possible for the committer to generate an
equal superposition of commitment to 0 and commitment to 1, in which case this binding property
is violated, as the receiver will open to 0 and 1 with equal probability. Nonetheless, Definition 6.1
is very similar to Definition 6.12. In particular, Definition 6.1 says that there is an implicit mea-
surement that could be done to extract the committed bit in a way unnoticeable to the malicious
committer as well as the honest receiver. Intuitively, whenever we would like to invoke Defini-
tion 6.12, we can switch to the ideal world where the bit is extracted, and then this “ideal scheme”
essentially satisfies Definition 6.12. We formalize this intuition with the following lemma.
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Definition 6.14. We call (𝐶,𝑅) a quantum commitment scheme with an inefficient receiver if it
satisfies the requirements of a commitment scheme except that 𝑅 need not be a QPT algorithm.

Let (𝐶,𝑅) and (𝐶,𝑅′) be two quantum commitment schemes with an inefficient receiver. We call
them statistically indistinguishable against malicious committers, if the outcome of any (unbounded)
nonuniform experiment described below can only distinguish 𝑅 from 𝑅′ with negligible advantage.

• The algorithm has an arbitrary non-uniform input state |𝜓𝜆⟩, and interacts as a committer
with either 𝑅 or 𝑅′ via the commitment scheme.

• The algorithm can choose to abort the interaction at any stage. Otherwise at the end of the
interaction, 𝑅 or 𝑅′ outputs his decision as a classical symbol 𝜇 ∈ {0, 1,⊥} to the algorithm.

• The algorithm performs an arbitrary channel on his internal state as the output.

Lemma 6.15. If a commitment scheme (𝐶,𝑅) satisfies Definition 6.1, then there is a commitment
scheme (𝐶, �̃�) with an inefficient receiver that satisfies Definition 6.12. Furthermore, these two
commitment schemes are statistically indistinguishable against malicious committers; and �̃� is the
same as 𝑅, except that at the end of the commit phase, the extractor ℰ of (𝐶,𝑅) is applied on the
receiver’s state, and its output is saved in a separate register.

Proof. Note that (𝐶, �̃�) is the same receiver as the ideal experiment of Definition 6.1, except that
at the end we always run the honest receiver as usual instead of checking whether the extraction is
correct, and therefore this change is statistically indistinguishable to the committer by Definition 6.1.

To show that it satisfies Definition 6.12, we notice that assume the extractor’s measurement
outcome is 𝑏 (if it is ⊥ then set 𝑏 to 0), the probability that the committer can open to 1 − 𝑏 is
negligible, as otherwise the ideal world will have a non-negligible weight on extraction error |E⟩⟨E|,
which contradicts Definition 6.1.

It is not hard to see that by leveraging Lemmas 6.13 and 6.15, we can recover Theorem 6.11 even
with our definition of statistical binding (Definition 6.1). The proof of this is not very enlightening
and we defer the details to Appendix A. By instantiating the statistically binding bit commitments
in Theorem 6.11 with PRS (Theorem 6.5 and Theorem 4.1), we obtain the following corollary.

Corollary 6.16. Assuming the existence of (2 log 𝜆 + 𝜔(log log 𝜆))-PRS, there exists maliciously
secure computation protocol for P/poly in the dishonest majority setting.

7 Other Applications of PRFS

In this section, we present some more applications of PRFS. Note that the parameters required for
these applications are beyond what we can construct from PRS in Section 4.

7.1 CPA-Secure Quantum Encryption Schemes

In Section 5 we presented the Quantum Pseudo One-Time Pad, which is an encryption scheme that
has one-time security (meaning that the key can only be used to encrypt one message before losing
security). In this section we present an encryption scheme that has many-time security.

More formally, we construct a symmetric-key quantum encryption scheme that is secure against
chosen plaintext attacks, or in other words satisfies CPA security. For simplicity we focus on schemes
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that encrypt a single bit; in the many-time security setting, this is equivalent to being able to encrypt
many bits. We also restrict our attention to a version of CPA security where the adversary makes
classical, nonadaptive queries to the encryption oracle; we believe that it should be straightforward
to adapt the proof to handle adaptive and even quantum queries.

Definition 7.1 (CPA-Secure Quantum Encryption Scheme). We say that a pair of QPT algorithms
(𝖤𝗇𝖼,𝖣𝖾𝖼) is a CPA-secure symmetric-key quantum encryption scheme for bits if the following
properties are satisfied:

• Correctness: There exists a negligible function 𝜀(·) such that for every 𝜆 and every 𝑏 ∈ {0, 1},

Pr
𝑘←{0,1}𝜆,
𝜎←𝖤𝗇𝖼𝜆(𝑘,𝑏)

[𝖣𝖾𝖼𝜆(𝑘, 𝜎) = 𝑏] ≥ 1− 𝜀(𝜆).

• Security: For every polynomial 𝑡(·), for every nonuniform QPT adversary 𝐴, there exists a
negligible function 𝜀(·) such that for all 𝜆 the adversary has at most 𝜀(𝜆) advantage in the
following security game:

1. Challenger samples key 𝑘 ← {0, 1}𝜆 and 𝑧 ← {0, 1}.
2. The adversary sends (𝑏

(0)
1 , 𝑏

(1)
1 ), . . . , (𝑏

(0)
𝑡 , 𝑏

(1)
𝑡 )) ∈ {0, 1}2𝑡 and receives(︁

𝖤𝗇𝖼𝜆

(︁
𝑘, 𝑏

(𝑧)
1

)︁
, . . . ,𝖤𝗇𝖼𝜆

(︁
𝑘, 𝑏

(𝑧)
𝑡

)︁)︁
.

3. The adversary outputs 𝑧′ ∈ {0, 1} and wins if 𝑧′ = 𝑧.

Here we have abbreviated 𝑡 = 𝑡(𝜆).

We now present our CPA-secure quantum encryption scheme (𝖤𝗇𝖼,𝖣𝖾𝖼) for bits. Let 𝐺 be a
(𝑑(𝜆), 𝑛(𝜆))-PRFS generator where 𝑑(𝜆), 𝑛(𝜆) = 𝜔(log 𝜆). Let 𝖳𝖾𝗌𝗍 denote the test algorithm from
Lemma 3.10. Fix 𝜆 and let 𝑑 = 𝑑(𝜆) and 𝑛 = 𝑛(𝜆).

1. 𝖤𝗇𝖼𝜆(𝑘, 𝑏): on input 𝑘 ∈ {0, 1}𝜆 and a message 𝑏 ∈ {0, 1}, do the following:

• Sample 𝑟 ← {0, 1}𝑑−1.
• Set 𝜎 = 𝐺(𝑘, (𝑟, 𝑏)).
• Output the ciphertext state (𝑟, 𝜎).

2. 𝖣𝖾𝖼𝜆(𝑘, 𝑟, 𝜎): on input 𝑘 ∈ {0, 1}𝜆, 𝑟 ∈ {0, 1}𝑑−1, and 𝑛-qubit state 𝜎, perform the following
operations:

• Execute 𝖳𝖾𝗌𝗍(𝑘, (𝑟, 0), 𝜎). If it accepts, set 𝑏 = 0, otherwise, set 𝑏 = 1.
• Output 𝑏.

Lemma 7.2. (𝖤𝗇𝖼,𝖣𝖾𝖼) satisfies the correctness property of a CPA-secure quantum encryption
scheme according to Definition 7.1.

Proof. The proof of correctness is virtually identical to that of Lemma 5.2.

Lemma 7.3. (𝖤𝗇𝖼,𝖣𝖾𝖼) satisfies the security property of a CPA-secure quantum encryption scheme
according to Definition 7.1.

Proof. Consider the following hybrids.
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Hybrid 0. This is the real security game, where the adversary receives(︁
𝖤𝗇𝖼𝜆

(︁
𝑘, 𝑏

(𝑧)
1

)︁
, . . . ,𝖤𝗇𝖼𝜆

(︁
𝑘, 𝑏

(𝑧)
𝑡

)︁)︁
,

which by definition is (︁
(𝑟1, 𝐺(𝑘, (𝑟1, 𝑏

(𝑧)
1 ))), . . . , (𝑟𝑡, 𝐺(𝑘, (𝑟𝑡, 𝑏

(𝑧)
𝑡 )))

)︁
where 𝑟1, . . . , 𝑟𝑡 ∈ {0, 1}𝑑−1 are chosen uniformly at random.

Hybrid 1. Instead of sampling 𝑟1, . . . , 𝑟𝑡 independently, they are sampled uniformly at random
conditioned on them being all distinct. Letting 𝖣 denote the event that the 𝑟1, . . . , 𝑟𝑡 are distinct,
the total variation distance between the two distributions on (𝑟1, . . . , 𝑟𝑡) can be bounded by∑︁

(𝑟1,...,𝑟𝑡)∈({0,1}𝑑−1)𝑡

⃒⃒⃒
Pr[𝑟1, . . . , 𝑟𝑡]− Pr[𝑟1, . . . , 𝑟𝑡 | 𝖣]

⃒⃒⃒
= Pr[¬𝖣] +

∑︁
(𝑟1,...,𝑟𝑡) distinct

⃒⃒⃒
Pr[𝑟1, . . . , 𝑟𝑡]− Pr[𝖣]−1 · Pr[𝑟1, . . . , 𝑟𝑡]

⃒⃒⃒
= Pr[¬𝖣] + Pr[𝖣]−1 · Pr[¬𝖣] ·

∑︁
(𝑟1,...,𝑟𝑡) distinct

Pr[𝑟1, . . . , 𝑟𝑡]

≤ Pr[¬𝖣] ·
(︁
1 + Pr[𝖣]−1

)︁
.

We compute

Pr[¬𝖣] ≤
(︂
𝑡

2

)︂
2−(𝑑−1) ≤ 𝑡2

2𝑑−1

which is negligible since 𝑑 = 𝜔(log 𝜆) and 𝑡 = poly(𝜆). Thus the total variation distance between
the distribution of inputs received by the adversary in Hybrid 0 versus that of Hybrid 1 is negligible.

This implies the adversary’s advantage in Hybrid 1 differs from its advantage in Hybrid 0 by at
most a negligible amount.

Hybrid 2. The adversary instead receives(︁
(𝑟1, |𝜗1⟩), . . . , (𝑟𝑡, |𝜗𝑡⟩)

)︁
where |𝜗1⟩ , . . . , |𝜗𝑡⟩ are independently sampled Haar-random states. The advantage of the adversary
in Hybrid 1 is negligibly different from its advantage in Hybrid 0 because of the pseudorandomness
property of the PRFS 𝐺: since all of the 𝑟𝑖’s are distinct, we can replace each of 𝐺(𝑘, (𝑟𝑖, 𝑏

(𝑧)
𝑖 )) with

an independently sampled Haar-random state |𝜗𝑖⟩ (and the advantage only changes negligibly with
the replacement).

However, this input is independent of the choice of bits (𝑏
(0)
𝑖 , 𝑏

(1)
𝑖 )𝑖 and the hidden bit 𝑧. Thus

the advantage of the adversary in guessing 𝑧 is 0. This implies that the adversary’s advantage in
the real security game (i.e. Hybrid 0) is negligible. This concludes the security proof.

As mentioned in the introduction, for this construction we require PRFS generators with 𝜔(log 𝜆)
input length, which we do not know how to construct from PRS generators alone. We leave this as
an open question.
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7.2 Message Authentication Codes

In this section we present a construction of reusable message authentication codes (MACs) from
PRFS. Just like in Section 7.1, for the sake of simplicity we focus on a version of MAC security
where the adversary makes classical, nonadaptive queries to the MAC signing oracle.

Definition 7.4. We say that a pair of QPT algorithms (𝖲𝗂𝗀𝗇,𝖵𝖾𝗋) is a reusable quantum mes-
sage authentication code (MAC) scheme for messages of length ℓ(𝜆) if the following properties are
satisfied:

• Correctness: There exists a negligible function 𝜀(·) such that for every 𝜆 and every 𝑚 ∈
{0, 1}ℓ,

Pr
𝑘←{0,1}𝜆,

𝜎←𝖲𝗂𝗀𝗇𝜆(𝑘,𝑚)

[𝖵𝖾𝗋𝜆(𝑘,𝑚, 𝜎) = 1] ≥ 1− 𝜀(𝜆).

• Security: For every polynomial 𝑡(·) and every nonuniform QPT adversary 𝐴, there exists a
negligible function 𝜀(·) such that for every 𝜆 the adversary wins with probability at most 𝜀(𝜆)
in the following security game:

1. Challenger samples key 𝑘 ← {0, 1}𝜆.
2. The adversary sends 𝑚1, . . . ,𝑚𝑡 ∈ {0, 1}ℓ and receives 𝖲𝗂𝗀𝗇(𝑘,𝑚𝑖) for 𝑖 = 1, . . . , 𝑡.

3. The adversary outputs a pair (𝑚*, 𝜎) where 𝑚* /∈ {𝑚1, . . . ,𝑚𝑡} and 𝜎 is a quantum state.

4. The adversary wins if 𝖵𝖾𝗋(𝑘,𝑚*, 𝜎) = 1.

Here we have abbreviated 𝑡 = 𝑡(𝜆) and ℓ = ℓ(𝜆).

We now present our MAC scheme (𝖲𝗂𝗀𝗇,𝖵𝖾𝗋) for messages of length ℓ(·). Let 𝐺 be a (𝑑(𝜆), 𝑛(𝜆))-
PRFS generator where 𝑑(𝜆) ≥ ℓ(𝜆) and 𝑛(𝜆) = 𝜔(log 𝜆). For simplicity, assume that 𝐺 has perfect
state generation. Let 𝖳𝖾𝗌𝗍 denote the test algorithm from Lemma 3.10. Fix 𝜆 and let 𝑑 = 𝑑(𝜆),
ℓ = ℓ(𝜆), and 𝑛 = 𝑛(𝜆).

1. 𝖲𝗂𝗀𝗇𝜆(𝑘,𝑚): on input 𝑘 ∈ {0, 1}𝜆 and a message 𝑚 ∈ {0, 1}ℓ, do the following:

• Output 𝜎 = 𝐺(𝑘,𝑚) (where we pad 𝑚 with trailing zeroes if ℓ < 𝑑).

2. 𝖵𝖾𝗋𝜆(𝑘,𝑚, 𝜎): on input 𝑘 ∈ {0, 1}𝜆, 𝑚 ∈ {0, 1}ℓ, and 𝑛-qubit state 𝜎, perform the following
operations:

• Execute 𝖳𝖾𝗌𝗍(𝑘,𝑚, 𝜎) (where we pad 𝑚 with zeroes if ℓ < 𝑑), and output 1 if it accepts;
otherwise, output 0.

Lemma 7.5. (𝖲𝗂𝗀𝗇,𝖵𝖾𝗋) satisfies the correctness property of a reusable quantum message authenti-
cation code (MAC) scheme according to Definition 7.4.

Proof. The proof of correctness is virtually identical to that of Lemma 5.2.

Lemma 7.6. (𝖲𝗂𝗀𝗇,𝖵𝖾𝗋) satisfies the security property of a reusable quantum message authentication
code (MAC) scheme according to Definition 7.4.
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Proof. Suppose there was an adversary 𝐴 and polynomial 𝑡(·) that won the corresponding MAC
security game with non-negligible probability 𝑝(·). Then for infinitely many 𝜆 there exists a sequence
of messages 𝑚1, . . . ,𝑚𝑡 ∈ {0, 1}ℓ and 𝑚* /∈ {𝑚1, . . . ,𝑚𝑡} where 𝑡 = 𝑡(𝜆) and ℓ = ℓ(𝜆) such that

Pr
𝑘←{0,1}𝜆

𝜎𝑖=𝖤𝗇𝖼𝜆(𝑘,𝑚𝑖)
𝜎*←𝐴(𝑚*,(𝑚𝑖,𝜎𝑖)𝑖)

[𝖵𝖾𝗋𝜆(𝑘,𝑚
*, 𝜎*) = 1] ≥ 𝑝(𝜆) .

By definition of the verification procedure, we have that for all 𝑘,𝑚*, 𝜎*,

Pr [𝖵𝖾𝗋𝜆(𝑘,𝑚
*, 𝜎*) = 1] = ⟨𝜓𝑘,𝑚* |𝜎* |𝜓𝑘,𝑚*⟩

where, since we assume that the PRFS generator 𝐺 has perfect state generation, the output of
𝐺(𝑘,𝑚*) is some pure state |𝜓𝑘,𝑚*⟩.

Consider the following QPT adversary 𝐵: it gets inputs

(𝑚1, . . . ,𝑚𝑡,𝑚
*, |𝜓𝑘,𝑚1⟩ , . . . , |𝜓𝑘,𝑚𝑡⟩ , |𝜓𝑘,𝑚*⟩),

first runs the adversary 𝐴 on input (𝑚*, (𝑚𝑖, |𝜓𝑘,𝑚𝑖
⟩)) to obtain a state 𝜎*, and then performs the

SWAP test between its copy of |𝜓𝑘,𝑚*⟩ and 𝜎*. The acceptance probability is 1
2+

1
2 ⟨𝜓𝑘,𝑚* |𝜎* |𝜓𝑘,𝑚*⟩ ≥

1
2 + 1

2𝑝(𝜆).
On the other hand, the pseudorandomness property of the PRFS generator implies that the

acceptance probability of 𝐵 is negligibly close to the case when it receives inputs

(𝑚1, . . . ,𝑚𝑡,𝑚
*, |𝜗1⟩ , . . . , |𝜗𝑡⟩ , |𝜗𝑡+1⟩),

where |𝜗1⟩ , . . . , |𝜗𝑡+1⟩ are independent 𝑛-qubit Haar-random states (here we assume without loss
of generality that 𝑚1, . . . ,𝑚𝑡,𝑚

* are all distinct). However the acceptance probability in this case
is

1

2
+ 𝔼
|𝜗𝑡+1⟩←H (𝑛)

1

2
Tr(𝜎* |𝜗𝑡+1⟩⟨𝜗𝑡+1|) =

1

2
+

1

2
· 2−𝑛

which is not negligibly close to 1
2 + 1

2𝑝(𝜆), a contradiction.

This MAC scheme requires PRFS generators with input length that is greater than the length
of the message being authenticated. Thus we do not know how to construct MAC schemes for long
messages using only PRS generators. We leave this is an open question.

7.3 Quantum Garbling Schemes for P/poly from Quantum Pseudo OTP

We construct quantum garbling schemes for P/poly from quantum pseudo OTP. We first define the
notion of quantum garbling schemes.

Definition 7.7 (Quantum garbling). A quantum garbling scheme for a class of circuits 𝒞 consists
of the following QPT algorithms:

• 𝖦𝖺𝗋𝖻𝗅𝖾(1𝜆, 𝐶): it takes as input a security parameter 𝜆, circuit 𝐶 ∈ 𝒞 and outputs a garbled
circuit 𝖦𝖢, modeled as a quantum state, along with a secret key 𝑠𝑘.

• 𝖨𝗇𝗉𝖤𝗇𝖼𝗈𝖽𝖾(𝑠𝑘, 𝑥): it takes as input the secret key 𝑠𝑘, classical input 𝑥 and output an input
encoding 𝜎𝑥.
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• 𝖣𝖾𝖼𝗈𝖽𝖾(𝖦𝖢, 𝜎𝑥): it takes as input a garbled circuit 𝖦𝖢, input encoding 𝜎𝑥 and outputs a value
𝜒.

Moreover, (𝖦𝖺𝗋𝖻𝗅𝖾, 𝖨𝗇𝗉𝖤𝗇𝖼𝗈𝖽𝖾,𝖣𝖾𝖼𝗈𝖽𝖾) satisfies the following additional properties:

• Correctness: for every 𝐶 ∈ 𝒞, input 𝑥, 𝐶(𝑥)← 𝖣𝖾𝖼𝗈𝖽𝖾(𝖦𝖢, 𝜎𝑥), where (𝖦𝖢, 𝑠𝑘)← 𝖦𝖺𝗋𝖻𝗅𝖾(1𝜆, 𝐶)
and 𝜎𝑥 ← 𝖨𝗇𝗉𝖤𝗇𝖼𝗈𝖽𝖾(𝑠𝑘, 𝑥).

• Security: There exists a QPT simulator 𝖲𝗂𝗆 such that for every 𝐶 ∈ 𝒞, 𝑥 ∈ {0, 1}ℓ, where ℓ
is the input of 𝐶, QPT distinguisher 𝐷, the following holds:

Pr
[︁
1← 𝐷(𝖦𝖢, 𝜎𝑥) : (𝖦𝖢, 𝑠𝑘)← 𝖦𝖺𝗋𝖻𝗅𝖾(1𝜆, 𝐶), 𝜎𝑥 ← 𝖨𝗇𝗉𝖤𝗇𝖼𝗈𝖽𝖾(𝑠𝑘, 𝑥)

]︁
−Pr

[︁
1← 𝐷(𝖦𝖢, 𝜎𝑥) : (𝖦𝖢, 𝜎𝑥)← 𝖲𝗂𝗆(1𝜆, 𝐶, 𝐶(𝑥))

]︁
| ≤ 𝜈(𝜆),

for some negligible function 𝜈(·).

Unlike the work of Brakerski and Yuen [BY20], who also define quantum garbling schemes, we only
consider quantum garbling schemes for classical circuits.

Construction. We start with a quantum pseudo one-time pad scheme, denoted by (𝖤𝗇𝖼𝜆,𝖣𝖾𝖼𝜆).
Specifically, we consider a quantum pseudo one-time pad scheme where the message length is twice
the key length. For convenience sake, we omit the subscript 𝜆 from the algorithms. We construct
a quantum garbling scheme for 𝒞 ∈ 𝖯/𝗉𝗈𝗅𝗒. We assume, without loss of generality, that every gate
has both fan-in and fan-out to be 2.

Our construction is identical to the point-and-permute garbling scheme [BMR90], where the
length doubling pseudorandom generator is replaced by quantum pseudo one-time pad. We present
the construction below.

1. 𝖦𝖺𝗋𝖻𝗅𝖾(1𝜆, 𝐶): on input the security parameter 𝜆, circuit 𝐶, do the following:

• For every wire 𝑤 in 𝐶, we associate two wire labels 𝑘𝑤,0
$←− {0, 1}2𝜆 and 𝑘𝑤,1

$←− {0, 1}2𝜆.
For every 𝑏 ∈ {0, 1}, we interpret 𝑘𝑤,𝑏 to be the concatenation of two 𝜆-bit strings 𝑘0𝑤,𝑏
and 𝑘1𝑤,𝑏.

• For every wire 𝑤 in 𝐶, we associate a random bit 𝑟𝑤.
• For every gate 𝐺 in 𝐶, compute a garbled gate consisting of four entries, indexed by
{0, 1}2. Let 𝑤1, 𝑤2 be the input wires of 𝐺 and 𝑤3, 𝑤4 be its output wires. The (𝑏1, 𝑏2)

𝑡

entry, for 𝑏1, 𝑏2 ∈ {0, 1}, is of the following form:

𝜌𝑏1,𝑏2𝐺 = 𝖤𝗇𝖼
(︁
𝑘𝑏1𝑤1
⊕ 𝑘𝑏2𝑤2

, 𝜃𝐺,𝑏1,𝑏2

)︁
where 𝜃𝐺,𝑏1,𝑏2 is defined as follows:(︂

𝑘𝑤3,𝐺(𝑏1⊕𝑟𝑤1 ,𝑏2⊕𝑟𝑤2 )⊕𝑟𝑤3
|| 𝐺(𝑏1 ⊕ 𝑟𝑤1 , 𝑏2 ⊕ 𝑟𝑤2) ||

|| 𝑘𝑤4,𝐺(𝑏1⊕𝑟𝑤1 ,𝑏2⊕𝑟𝑤2 )⊕𝑟𝑤4
|| 𝐺(𝑏1 ⊕ 𝑟𝑤1 , 𝑏2 ⊕ 𝑟𝑤2)⊕ 𝑟𝑤4

)︂
Denote the concatenation of all ciphertexts to be the garbled table, 𝒯𝐺.
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• Let 𝒲𝗈𝗎𝗍 consist of the output wires of 𝐶. Compute the translation table {𝒪𝑤}𝑤∈𝒲𝗈𝗎𝗍 ,
where 𝒪𝑤, for every 𝑤 ∈ 𝒲𝗈𝗎𝗍, is a mapping of the form: 𝑘𝑤,𝑏 → 𝑏, for 𝑏 ∈ {0, 1}.

• Output the garbled circuit 𝖦𝖢 =
(︀
{𝒯𝐺}𝐺∈𝒞 , {𝒪𝑤}𝑤∈𝒲𝗈𝗎𝗍

)︀
along with the secret key

𝑠𝑘 = {(𝑘𝑤,𝑏, 𝑟𝑤)}𝑏∈{0,1},𝑤∈𝒲𝗂𝗇
, where 𝒲𝗂𝗇 is the set of input wires of 𝐶.

2. 𝖨𝗇𝗉𝖤𝗇𝖼𝗈𝖽𝖾 (𝑠𝑘, 𝑥): on input secret key 𝑠𝑘 = {(𝑘𝑤,𝑏, 𝑟𝑤)}𝑤∈𝒲𝗂𝗇
, input 𝑥, output the following:

𝜎𝑥 = {
(︁
𝑘𝑤,𝑥𝜋(𝑤)

, 𝑟𝑤 ⊕ 𝑥𝜋(𝑤)
)︁
}𝑤∈𝒲𝗂𝗇

,

where 𝜋 :𝒲𝗂𝗇 → [|𝑥|] is a mapping from the input wires to the bits of the input.

3. 𝖣𝖾𝖼𝗈𝖽𝖾 (𝖦𝖢, 𝜎𝑥): on input garbled circuit 𝖦𝖢, input encoding 𝜎𝑥, we employ the follow iterative
process starting from the gates in the input layer and all the way to the output layer.

• For every 𝐺 ∈ 𝒞, with input wires 𝑤1, 𝑤2, output wires 𝑤3, 𝑤4, do the following: let
(𝑘′𝑤1

, 𝑟′𝑤1
) and (𝑘′𝑤2

, 𝑟′𝑤2
) be the wire labels recovered for the gate 𝐺. Compute

𝖣𝖾𝖼

(︂
(𝑘′𝑤1

)𝑟
′
𝑤1 ⊕ (𝑘′𝑤2

)𝑟
′
𝑤2 , 𝜌

𝑟′𝑤1
,𝑟′𝑤2

𝐺

)︂
to recover (𝑘′𝑤3

||𝑟′𝑤3
||𝑘′𝑤4

||𝑟′𝑤4
), where (𝑘′𝑤3

||𝑟′𝑤3
) represent the wire labels associated with

the wire 𝑤3 and (𝑘′𝑤4
||𝑟′𝑤4

) represent the wire labels associated with the wire 𝑤4.
• Output {𝒪𝑤 (𝑘′𝑤)}𝑤∈𝒲𝗈𝗎𝗍 .

We omit the correctness and security proofs since the above scheme is identical to the point-and-
permute garbling scheme of [BMR90].
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A Further details on instantiating MPC

In this section, we give more details about instantiating Theorem 6.11 with Definition 6.1. In
order to give a self-contained presentation of the proof of Theorem 6.11 with Definition 6.1 in a
succinct way, it will be convenient for us to go back and forth between the two definitions using
Lemmas 6.13 and 6.15, although in principle we can prove it without talking about Definition 6.12
at all. In particular, we are going to only focus on the parts of the proof of Theorem 6.11 where the
statistical binding property is invoked, and inform the reader how the proof changes if Definition 6.1
is instead used. We refer the readers to the original work [BCKM21a] for the full proof as well as
the definitions for the terminologies below that are irrelevant to our discussions.

The proof of Theorem 6.11 uses the statistical binding property in only two places.

1. A special case of [BCKM21b, Theorem 1]: They show how to compile a statistically binding
commitment in a way that preserves the statistical binding property, but in addition satisfies
an additional property that is irrelevant to our discussion.

2. [BCKM21b, Theorem 2]: They show how to go from a statistical-binding commitment scheme
(that is the output of step 1) to a statistical-hiding commitment scheme with another addi-
tional property that is also irrelevant to our discussion.

Definition A.1. Let (𝐶,𝑅) be a commitment scheme. A commitment scheme (𝐶 ′, 𝑅′) is called
committer-black-box compiled from (𝐶,𝑅), if its commit phase satisfies the following template:

• 𝐶 ′ picks some uniformly random bits 𝑟 and commits to them using (𝐶,𝑅).

• 𝑅′ randomly picks some of the commitments from the previous step to open, and aborts if 𝑅′

thinks 𝐶 ′ is malicious.

• 𝐶 ′ computes a (randomized) function that only depends on 𝑟 and the committed bit 𝑏, and
sends the output to 𝑅′.
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The function mapping (𝐶,𝑅) to (𝐶 ′, 𝑅′) is called the committer-black-box compiler.

We can verify that the compiler [BCKM21b, Fig. 1] in the first step indeed satisfies this definition
by staring at the construction. Since the statistical binding property is only invoked to prove the
compiled scheme also satisfies statistical binding, it suffices to prove the following lemma.

Lemma A.2. If committer-black-box compiler preserves Definition 6.12 for any (𝐶,𝑅), then it also
preserves Definition 6.1 for any (𝐶,𝑅).

Proof. Let (𝐶,𝑅) be a commitment scheme that satisfies Definition 6.1. Let (𝐶, �̃�) be the commit-
ment scheme with an inefficient receiver corresponding to Lemma 6.15. We establish that (𝐶 ′, 𝑅′)
satisfies Definition 6.1 for any malicious 𝐶 ′ via the following sequence of hybrids. We one by one
replace the invocations of (𝐶,𝑅) with (𝐶, �̃�). Each change is statistically indistinguishable to 𝐶 ′

by statistical indistinguishability of 𝑅 and �̃�. Denote the scheme after the change (𝐶 ′, �̄�) (since we
only make changes to the honest receiver).

Since (𝐶, �̃�) satisfies Definition 6.12, by the premise of the problem, the scheme after the change
(𝐶 ′, �̄�), also satisfies Definition 6.12. Invoking Lemma 6.13, (𝐶 ′, �̄�) also satisfies Definition 6.1. This
concludes the proof that the real world of (𝐶 ′, 𝑅′) is statistically indistinguishable from the ideal
world of (𝐶 ′, �̄�).

We now construct the extractor for (𝐶 ′, 𝑅′) and thus define the ideal world of (𝐶 ′, 𝑅′). Without
loss of generality, we assume the (non-interactive) opening phase of (𝐶,𝑅), the receiver simply
performs a three-outcome general measurement via the canonical square root . The extractor for
(𝐶 ′, 𝑅′) is simply to apply extractor on the receiver’s state across all the commitments (opened or
unopened), and then compute the extracted bit from the outputs of the extractors by Lemma 6.13.
We can see that the only difference between the ideal worlds of (𝐶 ′, 𝑅′) and (𝐶 ′, �̄�) is that for opened
commitments, the extractor is applied before the opening phase in 𝑅′, whereas it is applied after
the opening phase in �̄�. By Definition 6.1, we establish that these two ideal worlds are statistically
indistinguishable12, and therefore proving the lemma.

Definition A.3. Let (𝐶,𝑅) be a commitment scheme. A commitment scheme (𝐶 ′, 𝑅′) is called
receiver-black-box compiled from (𝐶,𝑅), if its commit phase satisfies the following template:

• 𝐶 ′ samples some random bits 𝑟 and sends a quantum message to 𝑅′ depending on 𝑟.

• 𝑅′ commits to a number of bits that is computed from the first message using (𝐶,𝑅).

• 𝐶 ′ chooses to randomly open some of the commitments, and aborts if 𝐶 ′ thinks 𝑅′ is malicious.

• 𝐶 ′ computes a (randomized) function that only depends on 𝑟 and the committed bit 𝑏, and
sends the output to 𝑅′.

The function mapping (𝐶,𝑅) to (𝐶 ′, 𝑅′) is called the receiver-black-box compiler.

We can also verify that the compiler [BCKM21b, Fig. 3] in the second step indeed satisfies
this definition by staring at the construction. Since the statistical binding property is only invoked
here to prove the compiled scheme also satisfies statistical hiding, it suffices to prove the following
lemma.

12To see this, let the POVM of extractor be {ℰ0, ℰ1, ℰ⊥} and let the receiver’s POVM be {𝑅0, 𝑅1, 𝑅⊥}, then
Definition 6.1 implies that 𝑅1−𝑏 ≼ 𝐼 ⊗ (ℰ𝑏 + 𝜀𝐼) for 𝑏 = 0, 1 and some negligible quantity 𝜀. Therefore, these two
POVMs almost commute when they are implemented by the canonical square root.
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Lemma A.4. If receiver-black-box compiler satisfies that the compiled scheme satisfies statistical
hiding for any (𝐶,𝑅) that satisfies Definition 6.12, then it also satisfies that the compiled scheme
satisfies statistical hiding for any (𝐶,𝑅) that satisfies Definition 6.1.

Proof. Let (𝐶,𝑅) be a commitment scheme that satisfies Definition 6.1, and let (𝐶 ′, 𝑅′) be the
compiled scheme. We need to prove that for any malicious receiver 𝑅′, his view when the committed
bit is 0 is statistically close to that when the committed bit is 1. We start with the view where
the committer commits to 0. Let (𝐶, �̃�) be the commitment scheme with an inefficient receiver
corresponding to Lemma 6.15. Similar to the proof before, we first change each invocation of (𝐶,𝑅)
to (𝐶, �̃�). Each change is statistically indistinguishable to the malicious receiver 𝑅′ by statistical
indistinguishability of 𝑅 and �̃�. Denote the scheme after the change (𝐶,𝑅′) (since we only make
chagnes to the honest committer).

Since (𝐶, �̃�) satisfies Definition 6.12, by the premise of the problem, the scheme after the change
(𝐶 ′, �̄�) satisfies statistical hiding. Therefore, we can change the commitment bit from 0 to 1, and
the change would be statistically indistinguishable by the statistical hiding property. We conclude
the proof by undoing the changes one by one in the previous paragraph, and we arrive at the view
where the committer commits to 1.

Since the rest of the proof of Theorem 6.11 does not depend on the definition of statistical
binding and thus we recover Theorem 6.11 with our statistical binding property.
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