Skip to main content

Towards Causal Model-Based Engineering in Automotive System Safety

  • Conference paper
  • First Online:
Model-Based Safety and Assessment (IMBSA 2022)

Abstract

Engineering is based on the understanding of causes and effects. Thus, causality should also guide the safety assessment of complex systems such as autonomous driving cars. To ensure the safety of the intended functionality of these systems, normative regulations like ISO 21448 recommend scenario-based testing. An important task here is to identify critical scenarios, so-called edge and corner cases. Data-driven approaches to this task (e.g. based on machine learning) cannot adequately address a constantly changing operational design domain. Model-based approaches offer a remedy – they allow including different sources of knowledge (e.g. data, human experts) into safety considerations. With this paper, we outline a novel approach for ensuring automotive system safety. We propose to use structural causal models as a probabilistic modelling language to combine knowledge about an open-context environment from different sources. Based on these models, we investigate parameter configurations that are candidates for critical scenarios. In this paper, we first discuss some aspects of scenario-based testing. We then provide an informal introduction to causal models and relate their development lifecycle to the established V-model. Finally, we outline a generic workflow for using causal models to identify critical scenarios and highlight some challenges that arise in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.asam.net/standards/detail/opendrive/.

  2. 2.

    https://www.asam.net/standards/detail/openscenario/.

References

  1. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1813–1820 (2018). https://doi.org/10.1109/IVS.2018.8500632

  2. Bagschik, G., Menzel, T., Reschka, A., Maurer, M.: Szenarien für Entwicklung, Absicherung und Test von automatisierten Fahrzeugen. In: 11th Workshop Fahrerassistenzsysteme (Uni-DAS e. V.), pp. 125–135 (2017)

    Google Scholar 

  3. Bareinboim, E., Correa, J.D., Ibeling, D., Icard, T.: On Pearl’s hierarchy and the foundations of causal inference, 1st edn., pp. 507–556. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3501714.3501743

  4. Bogdoll, D., et al.: Description of corner cases in automated driving: goals and challenges. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, pp. 1023–1028. IEEE (2021). https://doi.org/10.1109/ICCVW54120.2021.00119

  5. Bringmann, E., Kramer, A.: Model-based testing of automotive systems. In: 2008 1st International Conference on Software Testing, Verification, and Validation, pp. 485–493 (2008). https://doi.org/10.1109/ICST.2008.45

  6. Damm, W., Kemper, S., Möhlmann, E., Peikenkamp, T., Rakow, A.: Using traffic sequence charts for the development of HAVs. In: European Congress on Embedded Real Time Software and Systems 2018. 9th European Congress on Embedded Real Time Software and Systems (ERTS 2018) (2018). https://hal.archives-ouvertes.fr/hal-01714060

  7. Geiger, D., Verma, T., Pearl, J.: d-Separation: from theorems to algorithms. In: Machine Intelligence and Pattern Recognition, vol. 10, pp. 139–148. Elsevier Science Inc. (1990). https://doi.org/10.1016/B978-0-444-88738-2.50018-X

  8. de Gelder, E., et al.: Scenario parameter generation method and scenario representativeness metric for scenario-based assessment of automated vehicles. arXiv:2202.12025 [cs] (2022)

  9. Heidecker, F., et al.: An application-driven conceptualization of corner cases for perception in highly automated driving. In: 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 644–651 (2021). https://doi.org/10.1109/IV48863.2021.9575933. arXiv:2103.03678

  10. ISO Central Secretary: Road vehicles - Functional safety. Standard ISO 26262-2:2018, International Organization for Standardization, Geneva, CH (2018)

    Google Scholar 

  11. ISO Central Secretary: Road vehicles - Safety of the intended functionality. Standard ISO 21448:2022, International Organization for Standardization, Geneva, CH (2022)

    Google Scholar 

  12. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2009)

    Google Scholar 

  13. Koopman, P., Fratrik, F.: How many operational design domains, objects, and events? In: SafeAI@AAAI (2019)

    Google Scholar 

  14. Koopman, P., Kane, A., Black, J.: Credible autonomy safety argumentation. In: 27th Safety-Critical Systems Symposium (2019)

    Google Scholar 

  15. Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence, 2nd edn. CRC Press Inc., (2010). https://doi.org/10.1201/b10391

  16. Kramer, A., Legeard, B.: Model-Based Testing Essentials: Guide to the ISTQB® Certified Model-Based Tester Foundation Level. Wiley, Hoboken (2016). https://doi.org/10.1002/9781119130161

  17. Kramer, B., Neurohr, C., Büker, M., Böde, E., Fränzle, M., Damm, W.: Identification and quantification of hazardous scenarios for automated driving. In: Zeller, M., Höfig, K. (eds.) IMBSA 2020. LNCS, vol. 12297, pp. 163–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58920-2_11

    Chapter  Google Scholar 

  18. Menzel, T., Bagschik, G., Isensee, L., Schomburg, A., Maurer, M.: From functional to logical scenarios: detailing a keyword-based scenario description for execution in a simulation environment. In: 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, pp. 2383–2390. IEEE (2019). https://doi.org/10.1109/IVS.2019.8814099

  19. Neurohr, C., Westhofen, L., Henning, T., de Graaff, T., Möhlmann, E., Böde, E.: Fundamental considerations around scenario-based testing for automated driving. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 121–127 (2020). https://doi.org/10.1109/IV47402.2020.9304823

  20. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press (2009)

    Google Scholar 

  21. Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect, 1st edn. Basic Books Inc. (2018)

    Google Scholar 

  22. Peters, J., Janzing, D., Schölkopf, B.: Elements of Causal Inference - Foundations and Learning Algorithms. Adaptive Computation and Machine Learning Series. The MIT Press, Cambridge (2017)

    Google Scholar 

  23. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020). https://doi.org/10.1109/ACCESS.2020.2993730

    Article  Google Scholar 

  24. Schuldt, F.: Ein Beitrag für den methodischen Test von automatisierten Fahrfunktionen mit Hilfe von virtuellen Umgebungen, Ph.D. dissertation (2017). https://doi.org/10.24355/dbbs.084-201704241210

  25. Steimle, M., Menzel, T., Maurer, M.: Toward a consistent taxonomy for scenario-based development and test approaches for automated vehicles: a proposal for a structuring framework, a basic vocabulary, and its application. IEEE Access 9, 147828–147854 (2021). https://doi.org/10.1109/ACCESS.2021.3123504

    Article  Google Scholar 

  26. Steimle, M., Weber, N., Maurer, M.: Toward generating sufficiently valid test case results: a method for systematically assigning test cases to test bench configurations in a scenario-based test approach for automated vehicles. IEEE Access 10, 6260–6285 (2022). https://doi.org/10.1109/ACCESS.2022.3141198

    Article  Google Scholar 

  27. Vowels, M.J., Camgöz, N.C., Bowden, R.: D’ya like DAGs? A survey on structure learning and causal discovery. CoRR abs/2103.02582 (2021)

    Google Scholar 

  28. Weber, H., et al.: A framework for definition of logical scenarios for safety assurance of automated driving. Traffic Injury Prev. 20(sup1), S65–S70 (2019). https://doi.org/10.1080/15389588.2019.1630827. pMID: 31381437

  29. Xinxin, Z., Fei, L., Xiangbin, W.: CSG: critical scenario generation from real traffic accidents. In: 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, pp. 1330–1336. IEEE (2020). https://doi.org/10.1109/IV47402.2020.9304609

Download references

Acknowledgment

The present paper is supported by Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie through the granting of the funding project \(HolmeS^3\) (FKZ: DIK0173/03). Moreover, we thank Daniel Ebenhöch from e:fs TechHub GmbH, Tilo Linz from imbus AG, and their respective team members for valuable insights and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maier, R., Grabinger, L., Urlhart, D., Mottok, J. (2022). Towards Causal Model-Based Engineering in Automotive System Safety. In: Seguin, C., Zeller, M., Prosvirnova, T. (eds) Model-Based Safety and Assessment. IMBSA 2022. Lecture Notes in Computer Science, vol 13525. Springer, Cham. https://doi.org/10.1007/978-3-031-15842-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15842-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15841-4

  • Online ISBN: 978-3-031-15842-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics