Skip to main content

EMap: Real-Time Terrain Estimation

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13546))

Included in the following conference series:

  • 1019 Accesses

Abstract

Terrain mapping has a many use cases in both land surveyance and autonomous vehicles. Popular methods generate occupancy maps over 3D space, which are sub-optimal in outdoor scenarios with large, clear spaces where gaps in LiDAR readings are common. A terrain can instead be modelled as a height map over 2D space which can iteratively be updated with incoming LiDAR data, which simplifies computation and allows missing points to be estimated based on the current terrain estimate. The latter point is of particular interest, since it can reduce the data collection effort required (and its associated costs) and current options are not suitable to real-time operation. In this work, we introduce a new method that is capable of performing such terrain mapping and inferencing tasks in real-time. We evaluate it with a set of mapping scenarios and show it is capable of generating maps with higher accuracy than an OctoMap-based method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)

    Article  Google Scholar 

  2. Duberg, D., Jensfelt, P.: UFOMap: an efficient probabilistic 3D mapping framework that embraces the unknown. arXiv preprint arXiv:2003.04749 (2020)

  3. Gingras, D., Lamarche, T., Bedwani, J.-L., Dupuis, É.: Rough terrain reconstruction for rover motion planning. In: 2010 Canadian Conference on Computer and Robot Vision, pp. 191–198. IEEE (2010)

    Google Scholar 

  4. Malartre, F., Feraud, T., Debain, C., Chapuis, R.: Digital elevation map estimation by vision-lidar fusion. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 523–528. IEEE (2009)

    Google Scholar 

  5. Sock, J., Kim, J., Min, J., Kwak, K.: Probabilistic traversability map generation using 3D-lidar and camera. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5631–5637. IEEE (2016)

    Google Scholar 

  6. Chiang, K.-W., Tsai, G.-J., Li, Y.-H., El-Sheimy, N.: Development of LiDAR-based UAV system for environment reconstruction. IEEE Geosci. Remote Sens. Lett. 14(10), 1790–1794 (2017)

    Article  Google Scholar 

  7. Survey, U.G.: The national map—new data delivery homepage, advanced viewer, lidar visualization. US Geological Survey, Technical report (2019)

    Google Scholar 

  8. Hladik, C., Alber, M.: Accuracy assessment and correction. Remote Sens. Environ. 121, 224–235 (2012)

    Article  Google Scholar 

  9. Werbrouck, I., et al.: Digital elevation model generation for historical landscape analysis based on LiDAR data, a case study in Flanders (Belgium). Expert Syst. Appl. 38(7), 8178–8185 (2011)

    Article  Google Scholar 

  10. Meagher, D.: Geometric modeling using octree encoding. Comput. Graph. Image Process. 19(2), 129–147 (1982)

    Article  Google Scholar 

  11. Yeu, C.-W., Lim, M.-H., Huang, G.-B., Agarwal, A., Ong, Y.-S.: A new machine learning paradigm for terrain reconstruction. IEEE Geosci. Remote Sens. Lett. 3(3), 382–386 (2006)

    Article  Google Scholar 

  12. Kim, S., Kim, J.: GPmap: a unified framework for robotic mapping based on sparse Gaussian processes. In: Mejias, L., Corke, P., Roberts, J. (eds.) Field and Service Robotics. STAR, vol. 105, pp. 319–332. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-07488-7_22

    Chapter  Google Scholar 

  13. Wang, J., Englot, B.: Fast, accurate gaussian process occupancy maps via test-data octrees and nested Bayesian fusion. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1003–1010. IEEE (2016)

    Google Scholar 

  14. Eriksson, D., Dong, K., Lee, E., Bindel, D., Wilson, A.G.: Scaling gaussian process regression with derivatives. In: Advances in Neural Information Processing Systems, pp. 6867–6877 (2018)

    Google Scholar 

  15. Tresp, V.: A Bayesian committee machine. Neural Comput. 12(11), 2719–2741 (2000)

    Article  Google Scholar 

  16. Berger, M., et al.: State of the art in surface reconstruction from point clouds. In: Eurographics 2014 - State of the Art Reports (2014)

    Google Scholar 

  17. Leung, C., Appleton, B., Lovell, B.C., Sun, C.: An energy minimisation approach to stereo-temporal dense reconstruction. In: Proceedings of ICPR (2004)

    Google Scholar 

  18. Labatut, P., Pons, J.-P., Keriven, R.: Robust and efficient surface reconstruction from range data. Comput. Graph. Forum 28(8), 2275–2290 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Fox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lock, J.C., Camara, F., Fox, C. (2022). EMap: Real-Time Terrain Estimation. In: Pacheco-Gutierrez, S., Cryer, A., Caliskanelli, I., Tugal, H., Skilton, R. (eds) Towards Autonomous Robotic Systems. TAROS 2022. Lecture Notes in Computer Science(), vol 13546. Springer, Cham. https://doi.org/10.1007/978-3-031-15908-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15908-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15907-7

  • Online ISBN: 978-3-031-15908-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics