Skip to main content

Sensing Anomalies as Potential Hazards: Datasets and Benchmarks

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2022)

Abstract

We consider the problem of detecting, in the visual sensing data stream of an autonomous mobile robot, semantic patterns that are unusual (i.e., anomalous) with respect to the robot’s previous experience in similar environments. These anomalies might indicate unforeseen hazards and, in scenarios where failure is costly, can be used to trigger an avoidance behavior. We contribute three novel image-based datasets acquired in robot exploration scenarios, comprising a total of more than 200k labeled frames, spanning various types of anomalies. On these datasets, we study the performance of an anomaly detection approach based on autoencoders operating at different scales.

This work was supported as a part of NCCR Robotics, a National Centre of Competence in Research, funded by the Swiss National Science Foundation (grant number 51NF40_185543) and by the European Commission through the Horizon 2020 project 1-SWARM, grant ID 871743.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Similarly, retention of information following encounters with novel predators is one of the recognized evolutionary advantages of neophobic animals [21].

References

  1. Birnbaum, Z., et al.: Unmanned aerial vehicle security using behavioral profiling. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1310–1319 (2015). https://doi.org/10.1109/ICUAS.2015.7152425

  2. Chakravarty, P., Zhang, A., Jarvis, R., Kleeman, L.: Anomaly detection and tracking for a patrolling robot. In: Proceedings of the Australasian Conference on Robotics and Automation, pp. 1–9 (2007)

    Google Scholar 

  3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3) (2009). https://doi.org/10.1145/1541880.1541882

  4. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734 (2014). https://doi.org/10.3115/v1/D14-1179

  5. Christiansen, P., et al.: DeepAnomaly: combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field. Sensors 16(11), 1904 (2016). https://doi.org/10.3390/s16111904

    Article  Google Scholar 

  6. Deng, L.: The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012). https://doi.org/10.1109/MSP.2012.2211477

    Article  Google Scholar 

  7. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP (2016). https://doi.org/10.48550/ARXIV.1605.08803

  8. Erfani, S.M., Sothers: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016). https://doi.org/10.1016/j.patcog.2016.03.028

  9. Goodfellow, I.J., et al.: Generative adversarial networks (2014). https://doi.org/10.48550/ARXIV.1406.2661

  10. Haselmann, M., Gruber, D.P., Tabatabai, P.: Anomaly detection using deep learning based image completion. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1237–1242 (2018). https://doi.org/10.1109/ICMLA.2018.00201

  11. Hutter, M., et al.: ANYmal - a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 38–44 (2016). https://doi.org/10.1109/IROS.2016.7758092

  12. Kerner, H.R., et al.: Novelty detection for multispectral images with application to planetary exploration. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 9484–9491 (2019). https://doi.org/10.1609/aaai.v33i01.33019484

  13. Khalastchi, E., Kalech, M., Kaminka, G.A., Lin, R.: Online data-driven anomaly detection in autonomous robots. Knowl. Inf. Syst. 43(3), 657–688 (2014). https://doi.org/10.1007/s10115-014-0754-y

    Article  Google Scholar 

  14. Khalastchi, E., et al.: Online anomaly detection in unmanned vehicles. In: The 10th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011, Richland, SC, vol. 1, pp. 115–122 (2011)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://doi.org/10.48550/ARXIV.1412.6980

  16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). https://doi.org/10.48550/ARXIV.1312.6114

  17. Kobyzev, I., Prince, S.J., Brubaker, M.A.: Normalizing flows: an introduction and review of current methods. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 3964–3979 (2021). https://doi.org/10.1109/TPAMI.2020.2992934

    Article  Google Scholar 

  18. Kramer, M.: Autoassociative neural networks. Comput. Chem. Eng. 16(4), 313–328 (1992). https://doi.org/10.1016/0098-1354(92)80051-A. Neutral network applications in chemical engineering

  19. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, University of Toronto (2009)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks, vol. 25 (2012)

    Google Scholar 

  21. Mitchell, M.D., et al.: Living on the edge: how does environmental risk affect the behavioural and cognitive ecology of prey? Anim. Behav. 115, 185–192 (2016). https://doi.org/10.1016/j.anbehav.2016.03.018

    Article  Google Scholar 

  22. Moretti, L., Hentrup, M., Kotrschal, K., Range, F.: The influence of relationships on neophobia and exploration in wolves and dogs. Anim. Behav. 107, 159–173 (2015). https://doi.org/10.1016/j.anbehav.2015.06.008

    Article  Google Scholar 

  23. Park, D., et al.: Multimodal execution monitoring for anomaly detection during robot manipulation. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 407–414 (2016). https://doi.org/10.1109/ICRA.2016.7487160

  24. Park, D., et al.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018). https://doi.org/10.1109/LRA.2018.2801475

    Article  Google Scholar 

  25. Ruff, L., et al.: Deep one-class classification. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 4393–4402, 10–15 July 2018

    Google Scholar 

  26. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proc. IEEE 109(5), 756–795 (2021). https://doi.org/10.1109/JPROC.2021.3052449

    Article  Google Scholar 

  27. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3379–3388 (2018). https://doi.org/10.1109/CVPR.2018.00356

  28. Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, MLSDA 2014, New York, NY, USA, pp. 4–11 (2014). https://doi.org/10.1145/2689746.2689747

  29. Sarafijanovic-Djukic, N., Davis, J.: Fast distance-based anomaly detection in images using an inception-like autoencoder. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds.) DS 2019. LNCS (LNAI), vol. 11828, pp. 493–508. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33778-0_37

    Chapter  Google Scholar 

  30. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  31. Scime, L., Beuth, J.: A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 24, 273–286 (2018). https://doi.org/10.1016/j.addma.2018.09.034

    Article  Google Scholar 

  32. Sloan Wilson, D., Clark, A.B., Coleman, K., Dearstyne, T.: Shyness and boldness in humans and other animals. Trends Ecol. Evol. 9(11), 442–446 (1994). https://doi.org/10.1016/0169-5347(94)90134-1

    Article  Google Scholar 

  33. Stöwe, M., Bugnyar, T., Heinrich, B., Kotrschal, K.: Effects of group size on approach to novel objects in ravens (corvus corax). Ethology 112(11), 1079–1088 (2006). https://doi.org/10.1111/j.1439-0310.2006.01273.x

    Article  Google Scholar 

  34. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  35. Wellhausen, L., Ranftl, R., Hutter, M.: Safe robot navigation via multi-modal anomaly detection. IEEE Robot. Autom. Lett. 5(2), 1326–1333 (2020). https://doi.org/10.1109/LRA.2020.2967706

    Article  Google Scholar 

  36. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017). https://doi.org/10.48550/ARXIV.1708.07747

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Mantegazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mantegazza, D., Redondo, C., Espada, F., Gambardella, L.M., Giusti, A., Guzzi, J. (2022). Sensing Anomalies as Potential Hazards: Datasets and Benchmarks. In: Pacheco-Gutierrez, S., Cryer, A., Caliskanelli, I., Tugal, H., Skilton, R. (eds) Towards Autonomous Robotic Systems. TAROS 2022. Lecture Notes in Computer Science(), vol 13546. Springer, Cham. https://doi.org/10.1007/978-3-031-15908-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15908-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15907-7

  • Online ISBN: 978-3-031-15908-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics