Abstract
We consider the problem of detecting, in the visual sensing data stream of an autonomous mobile robot, semantic patterns that are unusual (i.e., anomalous) with respect to the robot’s previous experience in similar environments. These anomalies might indicate unforeseen hazards and, in scenarios where failure is costly, can be used to trigger an avoidance behavior. We contribute three novel image-based datasets acquired in robot exploration scenarios, comprising a total of more than 200k labeled frames, spanning various types of anomalies. On these datasets, we study the performance of an anomaly detection approach based on autoencoders operating at different scales.
This work was supported as a part of NCCR Robotics, a National Centre of Competence in Research, funded by the Swiss National Science Foundation (grant number 51NF40_185543) and by the European Commission through the Horizon 2020 project 1-SWARM, grant ID 871743.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Similarly, retention of information following encounters with novel predators is one of the recognized evolutionary advantages of neophobic animals [21].
References
Birnbaum, Z., et al.: Unmanned aerial vehicle security using behavioral profiling. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1310–1319 (2015). https://doi.org/10.1109/ICUAS.2015.7152425
Chakravarty, P., Zhang, A., Jarvis, R., Kleeman, L.: Anomaly detection and tracking for a patrolling robot. In: Proceedings of the Australasian Conference on Robotics and Automation, pp. 1–9 (2007)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3) (2009). https://doi.org/10.1145/1541880.1541882
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734 (2014). https://doi.org/10.3115/v1/D14-1179
Christiansen, P., et al.: DeepAnomaly: combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field. Sensors 16(11), 1904 (2016). https://doi.org/10.3390/s16111904
Deng, L.: The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012). https://doi.org/10.1109/MSP.2012.2211477
Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP (2016). https://doi.org/10.48550/ARXIV.1605.08803
Erfani, S.M., Sothers: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016). https://doi.org/10.1016/j.patcog.2016.03.028
Goodfellow, I.J., et al.: Generative adversarial networks (2014). https://doi.org/10.48550/ARXIV.1406.2661
Haselmann, M., Gruber, D.P., Tabatabai, P.: Anomaly detection using deep learning based image completion. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1237–1242 (2018). https://doi.org/10.1109/ICMLA.2018.00201
Hutter, M., et al.: ANYmal - a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 38–44 (2016). https://doi.org/10.1109/IROS.2016.7758092
Kerner, H.R., et al.: Novelty detection for multispectral images with application to planetary exploration. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 9484–9491 (2019). https://doi.org/10.1609/aaai.v33i01.33019484
Khalastchi, E., Kalech, M., Kaminka, G.A., Lin, R.: Online data-driven anomaly detection in autonomous robots. Knowl. Inf. Syst. 43(3), 657–688 (2014). https://doi.org/10.1007/s10115-014-0754-y
Khalastchi, E., et al.: Online anomaly detection in unmanned vehicles. In: The 10th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011, Richland, SC, vol. 1, pp. 115–122 (2011)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://doi.org/10.48550/ARXIV.1412.6980
Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). https://doi.org/10.48550/ARXIV.1312.6114
Kobyzev, I., Prince, S.J., Brubaker, M.A.: Normalizing flows: an introduction and review of current methods. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 3964–3979 (2021). https://doi.org/10.1109/TPAMI.2020.2992934
Kramer, M.: Autoassociative neural networks. Comput. Chem. Eng. 16(4), 313–328 (1992). https://doi.org/10.1016/0098-1354(92)80051-A. Neutral network applications in chemical engineering
Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, University of Toronto (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks, vol. 25 (2012)
Mitchell, M.D., et al.: Living on the edge: how does environmental risk affect the behavioural and cognitive ecology of prey? Anim. Behav. 115, 185–192 (2016). https://doi.org/10.1016/j.anbehav.2016.03.018
Moretti, L., Hentrup, M., Kotrschal, K., Range, F.: The influence of relationships on neophobia and exploration in wolves and dogs. Anim. Behav. 107, 159–173 (2015). https://doi.org/10.1016/j.anbehav.2015.06.008
Park, D., et al.: Multimodal execution monitoring for anomaly detection during robot manipulation. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 407–414 (2016). https://doi.org/10.1109/ICRA.2016.7487160
Park, D., et al.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018). https://doi.org/10.1109/LRA.2018.2801475
Ruff, L., et al.: Deep one-class classification. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 4393–4402, 10–15 July 2018
Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proc. IEEE 109(5), 756–795 (2021). https://doi.org/10.1109/JPROC.2021.3052449
Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3379–3388 (2018). https://doi.org/10.1109/CVPR.2018.00356
Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, MLSDA 2014, New York, NY, USA, pp. 4–11 (2014). https://doi.org/10.1145/2689746.2689747
Sarafijanovic-Djukic, N., Davis, J.: Fast distance-based anomaly detection in images using an inception-like autoencoder. In: Kralj Novak, P., Šmuc, T., Džeroski, S. (eds.) DS 2019. LNCS (LNAI), vol. 11828, pp. 493–508. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33778-0_37
Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12
Scime, L., Beuth, J.: A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 24, 273–286 (2018). https://doi.org/10.1016/j.addma.2018.09.034
Sloan Wilson, D., Clark, A.B., Coleman, K., Dearstyne, T.: Shyness and boldness in humans and other animals. Trends Ecol. Evol. 9(11), 442–446 (1994). https://doi.org/10.1016/0169-5347(94)90134-1
Stöwe, M., Bugnyar, T., Heinrich, B., Kotrschal, K.: Effects of group size on approach to novel objects in ravens (corvus corax). Ethology 112(11), 1079–1088 (2006). https://doi.org/10.1111/j.1439-0310.2006.01273.x
Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594
Wellhausen, L., Ranftl, R., Hutter, M.: Safe robot navigation via multi-modal anomaly detection. IEEE Robot. Autom. Lett. 5(2), 1326–1333 (2020). https://doi.org/10.1109/LRA.2020.2967706
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017). https://doi.org/10.48550/ARXIV.1708.07747
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mantegazza, D., Redondo, C., Espada, F., Gambardella, L.M., Giusti, A., Guzzi, J. (2022). Sensing Anomalies as Potential Hazards: Datasets and Benchmarks. In: Pacheco-Gutierrez, S., Cryer, A., Caliskanelli, I., Tugal, H., Skilton, R. (eds) Towards Autonomous Robotic Systems. TAROS 2022. Lecture Notes in Computer Science(), vol 13546. Springer, Cham. https://doi.org/10.1007/978-3-031-15908-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-15908-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15907-7
Online ISBN: 978-3-031-15908-4
eBook Packages: Computer ScienceComputer Science (R0)