Abstract
Soil compaction, an increase in soil density and decrease in porosity, has a negative effect on crop yields, and damaging environmental impacts. Mapping soil compaction at a high resolution is an important step in enabling precision agriculture practices to address these issues. Autonomous ground-based robotic approaches using proximal sensing have been proposed as alternatives to time-consuming and costly manual soil sampling. Soil compaction has high spatial variance, which can be challenging to capture in a limited time window. A multi-robot system can parallelise the sampling process and reduce the overall sampling time. Multi-robot soil sampling is critically underexplored in literature, and requires selection of methods to efficiently coordinate the sampling. This paper presents a simulation of multi-agent spatial sampling, extending the Mesa agent-based simulation framework, with general applicability, but demonstrated here as a testbed for different methodologies of multi-robot soil compaction mapping. To reduce the necessary number of samples for accurate mapping, while maximising information gained per sample, a dynamic sampling strategy, informed by kriging variance from kriging interpolation of sampled soil compaction values, has been implemented. This is enhanced by task clustering and insertion heuristics for task queuing. Results from the evaluation trials show the suitability of sequential single item auctions in this highly dynamic environment, and high interpolation accuracy resulting from our dynamic sampling, with avenues for improvements in this bespoke sampling methodology in future work.
This work was supported by the UKRI’s E3 fund via Lincoln Agri-Robotics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
McGrath, J.M., Spargo, J., Penn, C.J.: Soil fertility and plant nutrition. In: Plant Health, pp. 166–184. Elsevier (2014). https://doi.org/10.1016/B978-0-444-52512-3.00249-7
Robert, P.: Characterization of soil conditions at the field level for soil specific management. Geoderma 60(1), 57–72 (1993). https://doi.org/10.1016/0016-7061(93)90018-G. https://www.sciencedirect.com/science/article/pii/001670619390018G
Weiler, M., McDonnell, J.J.: Soil development and properties—water storage and movement. In: Burley, J. (ed.) Encyclopedia of Forest Sciences, pp. 1253–1260. Elsevier, Oxford (2004). https://doi.org/10.1016/B0-12-145160-7/00249-0. www.sciencedirect.com/science/article/pii/B0121451607002490
Jorajuria, D., Draghi, L., Aragon, A.: The effect of vehicle weight on the distribution of compaction with depth and the yield of Lolium/Trifolium grassland. Soil Tillage Res. 41(1), 1–12 (1997). https://doi.org/10.1016/S0167-1987(96)01085-9. https://www.sciencedirect.com/science/article/pii/S0167198796010859
Brevik, E., Fenton, T., Moran, L.: Effect of soil compaction on organic carbon amounts and distribution, South-Central Iowa. Environ. Pollut. 116, S137–S141 (2002). https://doi.org/10.1016/S0269-7491(01)00266-4. https://www.sciencedirect.com/science/article/pii/S0269749101002664
Chamen, W.C.T., Vermeulen, G.D., Campbell, D.J., Sommer, C.: Reduction of traffic-induced soil compaction: a synthesis. Soil Tillage Res. 24(4), 303–318 (1992). https://doi.org/10.1016/0167-1987(92)90116-S. https://www.sciencedirect.com/science/article/pii/016719879290116S
Barik, K., Aksakal, E.L., Islam, K.R., Sari, S., Angin, I.: Spatial variability in soil compaction properties associated with field traffic operations. CATENA 120, 122–133 (2014). https://doi.org/10.1016/j.catena.2014.04.013. https://www.sciencedirect.com/science/article/pii/S0341816214001118
Fentanes, J.P., Gould, I., Duckett, T., Pearson, S., Cielniak, G.: 3D soil compaction mapping through kriging-based exploration with a mobile robot. arXiv:1803.08069 [cs] (2018)
Grimstad, L., From, P.J.: Thorvald II - a modular and re-configurable agricultural robot. IFAC-PapersOnLine 50(1), 4588–4593 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1005. https://www.sciencedirect.com/science/article/pii/S2405896317314830
Oliver, M.A., Webster, R.: Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 4(3), 313–332 (1990). https://doi.org/10.1080/02693799008941549
Schneider, E., Sklar, E.I., Parsons, S., Özgelen, A.T.: Auction-based task allocation for multi-robot teams in dynamic environments. In: Dixon, C., Tuyls, K. (eds.) TAROS 2015. LNCS (LNAI), vol. 9287, pp. 246–257. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22416-9_29
Masad, D., Kazil, J.: Mesa: an agent-based modeling framework, pp. 51–58 (2015). https://doi.org/10.25080/Majora-7b98e3ed-009
Fentanes, J.P., Badiee, A., Duckett, T., Evans, J., Pearson, S., Cielniak, G.: Kriging-based robotic exploration for soil moisture mapping using a cosmic-ray sensor. J. Field Robot. 37(1), 122–136 (2020). https://doi.org/10.1002/rob.21914
Milella, A., Reina, G., Nielsen, M.: A multi-sensor robotic platform for ground mapping and estimation beyond the visible spectrum. Precis. Agric. 20(2), 423–444 (2019). https://doi.org/10.1007/s11119-018-9605-2
Almadhoun, R., Taha, T., Seneviratne, L., Zweiri, Y.: A survey on multi-robot coverage path planning for model reconstruction and mapping. SN Appl. Sci. 1(8), 847 (2019). https://doi.org/10.1007/s42452-019-0872-y
Albani, D., IJsselmuiden, J., Haken, R., Trianni, V.: Monitoring and mapping with robot swarms for agricultural applications. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2017). https://doi.org/10.1109/AVSS.2017.8078478
Maza, I., Ollero, A.: Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Alami, R., Chatila, R., Asama, H. (eds.) Distributed Autonomous Robotic Systems 6, pp. 221–230. Springer, Tokyo (2007). https://doi.org/10.1007/978-4-431-35873-2_22
Shi, Y., et al.: Adaptive informative sampling with environment partitioning for heterogeneous multi-robot systems. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 11718–11723 (2020). https://doi.org/10.1109/IROS45743.2020.9341711. ISSN 2153-0866
Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design. IEEE Trans. Inf. Theory 58(5), 3250–3265 (2012). https://doi.org/10.1109/TIT.2011.2182033. http://arxiv.org/abs/0912.3995
Ravikanna, R., Hanheide, M., Das, G., Zhu, Z.: Maximising availability of transportation robots through intelligent allocation of parking spaces. In: Fox, C., Gao, J., Ghalamzan Esfahani, A., Saaj, M., Hanheide, M., Parsons, S. (eds.) TAROS 2021. LNCS (LNAI), vol. 13054, pp. 337–348. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89177-0_34
Fentanes, J.P., Gould, I., Duckett, T., Pearson, S., Cielniak, G.: Soil compaction mapping through robot exploration: a study into kriging parameters. IEEE, Brisbane, Australia (2018). https://eprints.lincoln.ac.uk/id/eprint/32171/
Choi, T., Cielniak, G.: Adaptive selection of informative path planning strategies via reinforcement learning. In: 2021 European Conference on Mobile Robots (ECMR), pp. 1–6 (2021). https://doi.org/10.1109/ECMR50962.2021.9568796
Koenig, S., et al.: The power of sequential single-item auctions for agent coordination. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI 2006, Boston, Massachusetts, vol. 2, pp. 1625–1629. AAAI Press (2006)
Welch, B.L.: The significance of the difference between two means when the population variances are unequal. Biometrika 29(3/4), 350–362 (1938). https://doi.org/10.2307/2332010. https://www.jstor.org/stable/2332010
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Roberts-Elliott, L., Das, G.P., Millard, A.G. (2022). Agent-Based Simulation of Multi-robot Soil Compaction Mapping. In: Pacheco-Gutierrez, S., Cryer, A., Caliskanelli, I., Tugal, H., Skilton, R. (eds) Towards Autonomous Robotic Systems. TAROS 2022. Lecture Notes in Computer Science(), vol 13546. Springer, Cham. https://doi.org/10.1007/978-3-031-15908-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-15908-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15907-7
Online ISBN: 978-3-031-15908-4
eBook Packages: Computer ScienceComputer Science (R0)