Skip to main content

Agent-Based Simulation of Multi-robot Soil Compaction Mapping

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2022)

Abstract

Soil compaction, an increase in soil density and decrease in porosity, has a negative effect on crop yields, and damaging environmental impacts. Mapping soil compaction at a high resolution is an important step in enabling precision agriculture practices to address these issues. Autonomous ground-based robotic approaches using proximal sensing have been proposed as alternatives to time-consuming and costly manual soil sampling. Soil compaction has high spatial variance, which can be challenging to capture in a limited time window. A multi-robot system can parallelise the sampling process and reduce the overall sampling time. Multi-robot soil sampling is critically underexplored in literature, and requires selection of methods to efficiently coordinate the sampling. This paper presents a simulation of multi-agent spatial sampling, extending the Mesa agent-based simulation framework, with general applicability, but demonstrated here as a testbed for different methodologies of multi-robot soil compaction mapping. To reduce the necessary number of samples for accurate mapping, while maximising information gained per sample, a dynamic sampling strategy, informed by kriging variance from kriging interpolation of sampled soil compaction values, has been implemented. This is enhanced by task clustering and insertion heuristics for task queuing. Results from the evaluation trials show the suitability of sequential single item auctions in this highly dynamic environment, and high interpolation accuracy resulting from our dynamic sampling, with avenues for improvements in this bespoke sampling methodology in future work.

This work was supported by the UKRI’s E3 fund via Lincoln Agri-Robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McGrath, J.M., Spargo, J., Penn, C.J.: Soil fertility and plant nutrition. In: Plant Health, pp. 166–184. Elsevier (2014). https://doi.org/10.1016/B978-0-444-52512-3.00249-7

  2. Robert, P.: Characterization of soil conditions at the field level for soil specific management. Geoderma 60(1), 57–72 (1993). https://doi.org/10.1016/0016-7061(93)90018-G. https://www.sciencedirect.com/science/article/pii/001670619390018G

  3. Weiler, M., McDonnell, J.J.: Soil development and properties—water storage and movement. In: Burley, J. (ed.) Encyclopedia of Forest Sciences, pp. 1253–1260. Elsevier, Oxford (2004). https://doi.org/10.1016/B0-12-145160-7/00249-0. www.sciencedirect.com/science/article/pii/B0121451607002490

  4. Jorajuria, D., Draghi, L., Aragon, A.: The effect of vehicle weight on the distribution of compaction with depth and the yield of Lolium/Trifolium grassland. Soil Tillage Res. 41(1), 1–12 (1997). https://doi.org/10.1016/S0167-1987(96)01085-9. https://www.sciencedirect.com/science/article/pii/S0167198796010859

  5. Brevik, E., Fenton, T., Moran, L.: Effect of soil compaction on organic carbon amounts and distribution, South-Central Iowa. Environ. Pollut. 116, S137–S141 (2002). https://doi.org/10.1016/S0269-7491(01)00266-4. https://www.sciencedirect.com/science/article/pii/S0269749101002664

  6. Chamen, W.C.T., Vermeulen, G.D., Campbell, D.J., Sommer, C.: Reduction of traffic-induced soil compaction: a synthesis. Soil Tillage Res. 24(4), 303–318 (1992). https://doi.org/10.1016/0167-1987(92)90116-S. https://www.sciencedirect.com/science/article/pii/016719879290116S

  7. Barik, K., Aksakal, E.L., Islam, K.R., Sari, S., Angin, I.: Spatial variability in soil compaction properties associated with field traffic operations. CATENA 120, 122–133 (2014). https://doi.org/10.1016/j.catena.2014.04.013. https://www.sciencedirect.com/science/article/pii/S0341816214001118

  8. Fentanes, J.P., Gould, I., Duckett, T., Pearson, S., Cielniak, G.: 3D soil compaction mapping through kriging-based exploration with a mobile robot. arXiv:1803.08069 [cs] (2018)

  9. Grimstad, L., From, P.J.: Thorvald II - a modular and re-configurable agricultural robot. IFAC-PapersOnLine 50(1), 4588–4593 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1005. https://www.sciencedirect.com/science/article/pii/S2405896317314830

  10. Oliver, M.A., Webster, R.: Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 4(3), 313–332 (1990). https://doi.org/10.1080/02693799008941549

  11. Schneider, E., Sklar, E.I., Parsons, S., Özgelen, A.T.: Auction-based task allocation for multi-robot teams in dynamic environments. In: Dixon, C., Tuyls, K. (eds.) TAROS 2015. LNCS (LNAI), vol. 9287, pp. 246–257. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22416-9_29

    Chapter  Google Scholar 

  12. Masad, D., Kazil, J.: Mesa: an agent-based modeling framework, pp. 51–58 (2015). https://doi.org/10.25080/Majora-7b98e3ed-009

  13. Fentanes, J.P., Badiee, A., Duckett, T., Evans, J., Pearson, S., Cielniak, G.: Kriging-based robotic exploration for soil moisture mapping using a cosmic-ray sensor. J. Field Robot. 37(1), 122–136 (2020). https://doi.org/10.1002/rob.21914

  14. Milella, A., Reina, G., Nielsen, M.: A multi-sensor robotic platform for ground mapping and estimation beyond the visible spectrum. Precis. Agric. 20(2), 423–444 (2019). https://doi.org/10.1007/s11119-018-9605-2

  15. Almadhoun, R., Taha, T., Seneviratne, L., Zweiri, Y.: A survey on multi-robot coverage path planning for model reconstruction and mapping. SN Appl. Sci. 1(8), 847 (2019). https://doi.org/10.1007/s42452-019-0872-y

  16. Albani, D., IJsselmuiden, J., Haken, R., Trianni, V.: Monitoring and mapping with robot swarms for agricultural applications. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2017). https://doi.org/10.1109/AVSS.2017.8078478

  17. Maza, I., Ollero, A.: Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms. In: Alami, R., Chatila, R., Asama, H. (eds.) Distributed Autonomous Robotic Systems 6, pp. 221–230. Springer, Tokyo (2007). https://doi.org/10.1007/978-4-431-35873-2_22

    Chapter  Google Scholar 

  18. Shi, Y., et al.: Adaptive informative sampling with environment partitioning for heterogeneous multi-robot systems. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 11718–11723 (2020). https://doi.org/10.1109/IROS45743.2020.9341711. ISSN 2153-0866

  19. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design. IEEE Trans. Inf. Theory 58(5), 3250–3265 (2012). https://doi.org/10.1109/TIT.2011.2182033. http://arxiv.org/abs/0912.3995

  20. Ravikanna, R., Hanheide, M., Das, G., Zhu, Z.: Maximising availability of transportation robots through intelligent allocation of parking spaces. In: Fox, C., Gao, J., Ghalamzan Esfahani, A., Saaj, M., Hanheide, M., Parsons, S. (eds.) TAROS 2021. LNCS (LNAI), vol. 13054, pp. 337–348. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89177-0_34

    Chapter  Google Scholar 

  21. Fentanes, J.P., Gould, I., Duckett, T., Pearson, S., Cielniak, G.: Soil compaction mapping through robot exploration: a study into kriging parameters. IEEE, Brisbane, Australia (2018). https://eprints.lincoln.ac.uk/id/eprint/32171/

  22. Choi, T., Cielniak, G.: Adaptive selection of informative path planning strategies via reinforcement learning. In: 2021 European Conference on Mobile Robots (ECMR), pp. 1–6 (2021). https://doi.org/10.1109/ECMR50962.2021.9568796

  23. Koenig, S., et al.: The power of sequential single-item auctions for agent coordination. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI 2006, Boston, Massachusetts, vol. 2, pp. 1625–1629. AAAI Press (2006)

    Google Scholar 

  24. Welch, B.L.: The significance of the difference between two means when the population variances are unequal. Biometrika 29(3/4), 350–362 (1938). https://doi.org/10.2307/2332010. https://www.jstor.org/stable/2332010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Roberts-Elliott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roberts-Elliott, L., Das, G.P., Millard, A.G. (2022). Agent-Based Simulation of Multi-robot Soil Compaction Mapping. In: Pacheco-Gutierrez, S., Cryer, A., Caliskanelli, I., Tugal, H., Skilton, R. (eds) Towards Autonomous Robotic Systems. TAROS 2022. Lecture Notes in Computer Science(), vol 13546. Springer, Cham. https://doi.org/10.1007/978-3-031-15908-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15908-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15907-7

  • Online ISBN: 978-3-031-15908-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics