Skip to main content

In-silico Design and Computational Modelling of Electroactive Polymer Based Soft Robotics

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2022)

Abstract

The use of Electro-Active Polymers (EAPs) for the fabrication of evermore sophisticated miniaturised soft robotic actuators has seen an impressive development in recent years. This paper unveils the latest computational developments of the group related to three significant challenges presented in the in-silico modelling of EAPs, that are being explored with our in-house computational platform. These challenges, unique to the simulation of EAPs, include (i) robustly resolving the onset of potentially massive strains as a result of the significant flexibility of EAP components for soft robotics; (ii) accurately capturing the properties of multi-phased composites at a micro-scale within the macroscopic fields used in well-established computational modelling approaches (i.e. Finite Element Method); and (iii) optimising the electrode meso-architecture to enable device customisation for specific application required deformations. This paper also aims to demonstrate the in-silico design tools capability, robustness and flexibility, provided through a comprehensive set of numerical examples, including some novel results in electrode and EAP multi-material optimisation. With the upcoming addition of a 3D Direct-Ink-Writer (DIW) printer, the authors aim to close the loop allowing for in-house device design and optimisation, simulation and analysis as well as fabrication and testing.

The first and fourth authors acknowledge the financial support received from the UK Defence Science and Technology Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aage, N., Andreassen, E., Lazarov, B., Sigmund, O.: Giga-voxel computational morphogenesis for structural design. Nature 550, 84–86 (2017)

    Article  Google Scholar 

  2. Duduta, M., Hajiesmaili, E., Zhao, H., Wood, R., Clarke, D.: Realizing the potential of dielectric elastomer artificial muscles. PNAS 116, 2476–2481 (2019)

    Article  Google Scholar 

  3. Gil, A.J., Ortigosa, R.: A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation. CMAME 302, 293–328 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Guo, Y., Liu, L., Liu, Y., Leng, J.: Review of dielectric elastomer actuators and their applications in soft robots. Adv. Intell. Syst. 3, 2000282 (2021)

    Google Scholar 

  5. Hajiesmaili, E., Clarke, D.: Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nature Communicationes 10(183), 1–7 (2019)

    Google Scholar 

  6. Horák, M., Gil, A., Ortigosa, R., Kruzik, M.: A polyconvex transversely-isotropic invariant-based formulation for electro-mechanics: stability, minimisers and computational implementation. Under review (2022)

    Google Scholar 

  7. Hossain, M., Navaratne, R., Peric, D.: 3D printed elastomeric polyurethane: viscoelastic experimental characterizations and constitutive modelling with nonlinear viscosity functions. IJNLM 126, 293–328 (2020)

    Google Scholar 

  8. Li, T., Keplinger, C., Baumgartner, R., Bauer, S., Yang, W., Suo, Z.: Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. JMPS 61(2), 611–628 (2013)

    Google Scholar 

  9. Marín, F., Martínez-Frutos, J., Ortigosa, R., Gil, A.: A convex multi-variable based computational framework for multilayered electro-active polymers. CMAME 374, 113567 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Martínez-Frutos, J., Ortigosa, R., Gil, A.J.: In-silico design of electrode meso-architecture for shape morphing dielectric elastomers. JMPS 157 (2021). https://doi.org/10.1016/j.jmps.2021.104594

  11. Munk, D.J., Vio, G.A., Steven, G.P.: Topology and shape optimization methods using evolutionary algorithms: a review. Struct. Multidiscip. Optim. 52(3), 613–631 (2015). https://doi.org/10.1007/s00158-015-1261-9

    Article  MathSciNet  Google Scholar 

  12. Ortigosa, R., Gil, A.J.: A new framework for large strain electromechanics based on convex multi-variable strain energies: conservation laws, hyperbolicity and extension to electro-magneto-mechanics. CMAME 309, 202–242 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Ortigosa, R., Gil, A.J.: A new framework for large strain electromechanics based on convex multi-variable strain energies: finite element discretisation and computational implementation. CMAME 302, 329–360 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Ortigosa, R., Gil, A.J., Martínez-Frutos, J., Franke, M., Bonet, J.: A new energy-momentum time integration scheme for non-linear thermo-mechanics. CMAME 372, 113395 (2020)

    Google Scholar 

  15. Siboni, M.H., Castañeda, P.P.: Fiber-constrained, dielectric-elastomer composites: finite-strain response and stability analysis. J. Mech. Phys. Solids 68, 211–238 (2014)

    Article  MathSciNet  Google Scholar 

  16. Takezawa, A., Nishiwaki, S., Kitamura, M.: Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phys. 229(7), 2697–2718 (2010)

    Article  MathSciNet  Google Scholar 

  17. Wang, M., Wang, X., Guo, D.: A level-set method for structural topology optimization. CMAME 192, 227–246 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Zhao, Y., Yin, L.J., Zhong, S.L., Zha, J.W., Dang, Z.M.: Review of dielectric elastomers for actuators, generators and sensors. IET Nanodielectr. 3, 99–106 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gil, A.J., Ortigosa, R., Martínez-Frutos, J., Ellmer, N. (2022). In-silico Design and Computational Modelling of Electroactive Polymer Based Soft Robotics. In: Pacheco-Gutierrez, S., Cryer, A., Caliskanelli, I., Tugal, H., Skilton, R. (eds) Towards Autonomous Robotic Systems. TAROS 2022. Lecture Notes in Computer Science(), vol 13546. Springer, Cham. https://doi.org/10.1007/978-3-031-15908-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15908-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15907-7

  • Online ISBN: 978-3-031-15908-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics