Abstract
The Edge Multicut problem is a classical cut problem where given an undirected graph G, a set of pairs of vertices \(\mathcal {P}\), and a budget \(k\), the goal is to determine if there is a set S of at most \(k\) edges such that for each \((s,t) \in \mathcal {P}\), \(G-S\) has no path from s to t. Edge Multicut has been relatively recently shown to be fixed-parameter tractable (FPT), parameterized by \(k\), by Marx and Razgon [SICOMP 2014], and independently by Bousquet et al. [SICOMP 2018]. In the weighted version of the problem, called Weighted Edge Multicut one is additionally given a weight function \(\texttt {wt}: E(G) \rightarrow \mathbb {N}\) and a weight bound \(\textbf{w}\), and the goal is to determine if there is a solution of size at most \(k\) and weight at most \(\textbf{w}\). Both the FPT algorithms for Edge Multicut by Marx et al. and Bousquet et al. fail to generalize to the weighted setting. In fact, the weighted problem is non-trivial even on trees and determining whether Weighted Edge Multicut on trees is FPT was explicitly posed as an open problem by Bousquet et al. [STACS 2009]. In this article, we answer this question positively by designing an algorithm which uses a very recent result by Kim et al. [STOC 2022] about directed flow augmentation as subroutine.
We also study a variant of this problem where there is no bound on the size of the solution, but the parameter is a structural property of the input, for example, the number of leaves of the tree. We strengthen our results by stating them for the more general vertex deletion version.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. SIAM J. Comput. 47(1), 166–207 (2018). https://doi.org/10.1137/140961808
Bousquet, N., Daligault, J., Thomassé, S., Yeo, A.: A polynomial kernel for multicut in trees. In: Albers, S., Marion, J. (eds.) 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, 26–28 February 2009, Freiburg, Germany, Proceedings. LIPIcs, vol. 3, pp. 183–194. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2009). https://doi.org/10.4230/LIPIcs.STACS.2009.1824
Chen, J., Fan, J.H., Kanj, I., Liu, Y., Zhang, F.: Multicut in trees viewed through the eyes of vertex cover. J. Comput. Syst. Sci. 78(5), 1637–1650 (2012)
Chitnis, R., Egri, L., Marx, D.: List H-coloring a graph by removing few vertices. Algorithmica 78(1), 110–146 (2016). https://doi.org/10.1007/s00453-016-0139-6
Chitnis, R.H., Cygan, M., Hajiaghayi, M.T., Marx, D.: Directed subset feedback vertex set is fixed-parameter tractable. ACM Trans. Algorithms 11(4), 28:1-28:28 (2015). https://doi.org/10.1145/2700209
Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset. SIAM J. Comput. 42(4), 1674–1696 (2013). https://doi.org/10.1137/12086217X
Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994). https://doi.org/10.1137/S0097539792225297
Galby, E., Marx, D., Schepper, P., Sharma, R., Tale, P.: Parameterized complexity of weighted multicut in trees. CoRR abs/2205.10105 (2022). https://doi.org/10.48550/arXiv.2205.10105
Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997). https://doi.org/10.1007/BF02523685
Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for multicut in trees. Networks 46(3), 124–135 (2005). https://doi.org/10.1002/net.20081
Guo, J., Niedermeier, R.: Exact algorithms and applications for tree-like weighted set cover. J. Discrete Algorithms 4(4), 608–622 (2006). https://doi.org/10.1016/j.jda.2005.07.005
Kanj, I., et al.: Algorithms for cut problems on trees. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 283–298. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12691-3_22
Kim, E.J., Kratsch, S., Pilipczuk, M., Wahlström, M.: Solving hard cut problems via flow-augmentation. In: Marx, D. (ed.) Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, 10–13 January 2021, pp. 149–168. SIAM (2021). https://doi.org/10.1137/1.9781611976465.11
Kim, E.J., Kratsch, S., Pilipczuk, M., Wahlström, M.: Directed flow-augmentation. In: Leonardi, S., Gupta, A. (eds.) STOC 2022: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, 20–24 June 2022, pp. 938–947. ACM (2022). https://doi.org/10.1145/3519935.3520018 Full version: arXiv:2111.03450
Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Fixed-parameter tractability of multicut in directed acyclic graphs. SIAM J. Discret. Math. 29(1), 122–144 (2015). https://doi.org/10.1137/120904202
Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: new tools for kernelization. J. ACM 67(3), 16:1-16:50 (2020). https://doi.org/10.1145/3390887
Lokshtanov, D., Marx, D.: Clustering with local restrictions. Inf. Comput. 222, 278–292 (2013). https://doi.org/10.1016/j.ic.2012.10.016
Lokshtanov, D., Ramanujan, M.S.: Parameterized tractability of multiway cut with parity constraints. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 750–761. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_63
Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406 (2006). https://doi.org/10.1016/j.tcs.2005.10.007
Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. SIAM J. Comput. 43(2), 355–388 (2014). https://doi.org/10.1137/110855247
Yannakakis, M., Kanellakis, P.C., Cosmadakis, S.S., Papadimitriou, C.H.: Cutting and partitioning a graph after a fixed pattern. In: Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 712–722. Springer, Heidelberg (1983). https://doi.org/10.1007/BFb0036950
Acknowledgements
Research supported by the European Research Council (ERC) consolidator grant No. 725978 SYSTEMATICGRAPH. Philipp Schepper is part of Saarbrücken Graduate School of Computer Science, Germany.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Galby, E., Marx, D., Schepper, P., Sharma, R., Tale, P. (2022). Parameterized Complexity of Weighted Multicut in Trees. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-15914-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15913-8
Online ISBN: 978-3-031-15914-5
eBook Packages: Computer ScienceComputer Science (R0)