Abstract
For a positive integer \(\ell \ge 3\), the \(C_\ell \)-Contractibility problem takes as input an undirected simple graph G and determines whether G can be transformed into a graph isomorphic to \(C_\ell \) (the induced cycle on \(\ell \) vertices) using only edge contractions. Brouwer and Veldman [JGT 1987] showed that \(C_4\)-Contractibility is \(\textsf{NP}\)-complete in general graphs. It is easy to verify that that \(C_3\)-Contractibility is polynomial-time solvable. Dabrowski and Paulusma [IPL 2017] showed that \(C_{\ell }\)-Contractibility is \(\textsf{NP}\)-complete on bipartite graphs for \(\ell = 6\) and posed as open problems the status of \(C_{\ell }\)-Contractibility when \(\ell \) is 4 or 5. In this paper, we show that both \(C_5\)-Contractibility and \(C_4\)-Contractibility are \(\textsf{NP}\)-complete on bipartite graphs.
The full version of this paper is at https://arxiv.org/abs/2206.07358
P. Tale—The author has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement SYSTEMATICGRAPH (No. 725978).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andersson, M., Gudmundsson, J., Levcopoulos, C.: Restricted mesh simplification using edge contractions. Int. J. Comput. Geom. Appl. 19(3), 247–265 (2009). https://doi.org/10.1142/S0218195909002940
Belmonte, R., Golovach, P.A., Heggernes, P., van ’t Hof, P., Kamiński, M., Paulusma, D.: Detecting Fixed Patterns in Chordal Graphs in Polynomial Time. Algorithmica 69(3), 501–521 (2013). https://doi.org/10.1007/s00453-013-9748-5
Bernstein, A., Däubel, K., Disser, Y., Klimm, M., Mütze, T., Smolny, F.: Distance-preserving graph contractions. SIAM J. Discrete Math. 33(3), 1607–1636 (2019). https://doi.org/10.1137/18M1169382
Blum, D.J.: Circularity of graphs. Ph.D. thesis, Virginia Polytechnic Institute and State University (1982)
Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. J. Graph Theory 11(1), 71–79 (1987). https://doi.org/10.1002/jgt.3190110111
Cheng, S., Dey, T.K., Poon, S.: Hierarchy of surface models and irreducible triangulations. Comput. Geom. 27(2), 135–150 (2004). https://doi.org/10.1016/j.comgeo.2003.07.001
Cong, J., Lim, S.K.: Edge separability-based circuit clustering with application to multilevel circuit partitioning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(3), 346–357 (2004). https://doi.org/10.1109/TCAD.2004.823353
Dabrowski, K.K., Paulusma, D.: Contracting bipartite graphs to paths and cycles. Inf. Process. Lett. 127, 37–42 (2017). https://doi.org/10.1016/j.ipl.2017.06.013
Fiala, J., Kaminski, M., Paulusma, D.: A note on contracting claw-free graphs. Discrete Math. Theor. Comput. Sci. 15(2), 223–232 (2013)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H Freeman, New York (1979)
Hammack, R.H.: Cyclicity of graphs. J. Graph Theory 32(2), 160–170 (1999). https://doi.org/10.1002/(SICI)1097-0118(199910)32:2<160::AID-JGT6>3.0.CO;2-U
Hammack, R.H.: A note on the complexity of computing cyclicity. Ars Comb. 63, 89–95 (2002)
Harel, D., Koren, Y.: On clustering using random walks. In: Hariharan, R., Vinay, V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 18–41. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45294-X_3
Heggernes, P., van ’t Hof, P., Lévêque, B., Paul, C.: Contracting chordal graphs and bipartite graphs to paths and trees. Discrete Appl, Math. 164, 444–449 (2014). https://doi.org/10.1016/j.dam.2013.02.025
Hoede, C., Veldman, H.J.: Contraction theorems in Hamiltonian graph theory. Discrete Math. 34(1), 61–67 (1981). https://doi.org/10.1016/0012-365X(81)90022-4
van ’t Hof, P., Kaminski, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph contractions and induced minors. Discrete Appl. Math. 160(6), 799–809 (2012). https://doi.org/10.1016/j.dam.2010.05.005
Ito, T., Kaminski, M., Paulusma, D., Thilikos, D.M.: Parameterizing cut sets in a graph by the number of their components. Theor. Comput. Sci. 412(45), 6340–6350 (2011). https://doi.org/10.1016/j.tcs.2011.07.005
Kamiński, M., Paulusma, D., Thilikos, D.M.: Contractions of planar graphs in polynomial time. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 122–133. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-2_11
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998). https://doi.org/10.1137/S1064827595287997
Kern, W., Paulusma, D.: Contracting to a longest path in H-free graphs. In: Cao, Y., Cheng, S., Li, M. (eds.) 31st International Symposium on Algorithms and Computation, ISAAC 2020, 14–18 December 2020, Hong Kong, China (Virtual Conference). LIPIcs, vol. 181, pp. 22:1–22:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ISAAC.2020.22
Levin, A., Paulusma, D., Woeginger, G.J.: The computational complexity of graph contractions I: polynomially solvable and NP-complete cases. Networks 51(3), 178–189 (2008). https://doi.org/10.1002/net.20214
Martin, B., Paulusma, D.: The computational complexity of disconnected cut and \(2K_2\)-partition. J. Comb. Theory Ser. B 111, 17–37 (2015). https://doi.org/10.1016/j.jctb.2014.09.002
Martin, B., Paulusma, D., van Leeuwen, E.J.: Disconnected cuts in claw-free graphs. J. Comput. Syst. Sci. 113, 60–75 (2020). https://doi.org/10.1016/j.jcss.2020.04.005
Robertson, N., Seymour, P.D.: Graph Minors. XIII. The Disjoint Paths Problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995). https://doi.org/10.1006/jctb.1995.1006
Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings of the 10th Annual ACM Symposium on Theory of Computing, 1–3 May 1978, San Diego, California, USA. pp. 216–226. ACM (1978). https://doi.org/10.1145/800133.804350
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Krithika, R., Sharma, R., Tale, P. (2022). The Complexity of Contracting Bipartite Graphs into Small Cycles. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-15914-5_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15913-8
Online ISBN: 978-3-031-15914-5
eBook Packages: Computer ScienceComputer Science (R0)