Skip to main content

The Complexity of Contracting Bipartite Graphs into Small Cycles

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13453))

Included in the following conference series:

  • 564 Accesses

Abstract

For a positive integer \(\ell \ge 3\), the \(C_\ell \)-Contractibility problem takes as input an undirected simple graph G and determines whether G can be transformed into a graph isomorphic to \(C_\ell \) (the induced cycle on \(\ell \) vertices) using only edge contractions. Brouwer and Veldman [JGT 1987] showed that \(C_4\)-Contractibility is \(\textsf{NP}\)-complete in general graphs. It is easy to verify that that \(C_3\)-Contractibility is polynomial-time solvable. Dabrowski and Paulusma [IPL 2017] showed that \(C_{\ell }\)-Contractibility is \(\textsf{NP}\)-complete on bipartite graphs for \(\ell = 6\) and posed as open problems the status of \(C_{\ell }\)-Contractibility when \(\ell \) is 4 or 5. In this paper, we show that both \(C_5\)-Contractibility and \(C_4\)-Contractibility are \(\textsf{NP}\)-complete on bipartite graphs.

The full version of this paper is at https://arxiv.org/abs/2206.07358

P. Tale—The author has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement SYSTEMATICGRAPH (No. 725978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersson, M., Gudmundsson, J., Levcopoulos, C.: Restricted mesh simplification using edge contractions. Int. J. Comput. Geom. Appl. 19(3), 247–265 (2009). https://doi.org/10.1142/S0218195909002940

    Article  MathSciNet  MATH  Google Scholar 

  2. Belmonte, R., Golovach, P.A., Heggernes, P., van ’t Hof, P., Kamiński, M., Paulusma, D.: Detecting Fixed Patterns in Chordal Graphs in Polynomial Time. Algorithmica 69(3), 501–521 (2013). https://doi.org/10.1007/s00453-013-9748-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernstein, A., Däubel, K., Disser, Y., Klimm, M., Mütze, T., Smolny, F.: Distance-preserving graph contractions. SIAM J. Discrete Math. 33(3), 1607–1636 (2019). https://doi.org/10.1137/18M1169382

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, D.J.: Circularity of graphs. Ph.D. thesis, Virginia Polytechnic Institute and State University (1982)

    Google Scholar 

  5. Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. J. Graph Theory 11(1), 71–79 (1987). https://doi.org/10.1002/jgt.3190110111

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, S., Dey, T.K., Poon, S.: Hierarchy of surface models and irreducible triangulations. Comput. Geom. 27(2), 135–150 (2004). https://doi.org/10.1016/j.comgeo.2003.07.001

    Article  MathSciNet  MATH  Google Scholar 

  7. Cong, J., Lim, S.K.: Edge separability-based circuit clustering with application to multilevel circuit partitioning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(3), 346–357 (2004). https://doi.org/10.1109/TCAD.2004.823353

    Article  Google Scholar 

  8. Dabrowski, K.K., Paulusma, D.: Contracting bipartite graphs to paths and cycles. Inf. Process. Lett. 127, 37–42 (2017). https://doi.org/10.1016/j.ipl.2017.06.013

    Article  MathSciNet  MATH  Google Scholar 

  9. Fiala, J., Kaminski, M., Paulusma, D.: A note on contracting claw-free graphs. Discrete Math. Theor. Comput. Sci. 15(2), 223–232 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H Freeman, New York (1979)

    MATH  Google Scholar 

  11. Hammack, R.H.: Cyclicity of graphs. J. Graph Theory 32(2), 160–170 (1999). https://doi.org/10.1002/(SICI)1097-0118(199910)32:2<160::AID-JGT6>3.0.CO;2-U

  12. Hammack, R.H.: A note on the complexity of computing cyclicity. Ars Comb. 63, 89–95 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Harel, D., Koren, Y.: On clustering using random walks. In: Hariharan, R., Vinay, V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 18–41. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45294-X_3

    Chapter  Google Scholar 

  14. Heggernes, P., van ’t Hof, P., Lévêque, B., Paul, C.: Contracting chordal graphs and bipartite graphs to paths and trees. Discrete Appl, Math. 164, 444–449 (2014). https://doi.org/10.1016/j.dam.2013.02.025

  15. Hoede, C., Veldman, H.J.: Contraction theorems in Hamiltonian graph theory. Discrete Math. 34(1), 61–67 (1981). https://doi.org/10.1016/0012-365X(81)90022-4

    Article  MathSciNet  MATH  Google Scholar 

  16. van ’t Hof, P., Kaminski, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph contractions and induced minors. Discrete Appl. Math. 160(6), 799–809 (2012). https://doi.org/10.1016/j.dam.2010.05.005

  17. Ito, T., Kaminski, M., Paulusma, D., Thilikos, D.M.: Parameterizing cut sets in a graph by the number of their components. Theor. Comput. Sci. 412(45), 6340–6350 (2011). https://doi.org/10.1016/j.tcs.2011.07.005

    Article  MathSciNet  MATH  Google Scholar 

  18. Kamiński, M., Paulusma, D., Thilikos, D.M.: Contractions of planar graphs in polynomial time. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 122–133. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-2_11

    Chapter  Google Scholar 

  19. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998). https://doi.org/10.1137/S1064827595287997

    Article  MathSciNet  MATH  Google Scholar 

  20. Kern, W., Paulusma, D.: Contracting to a longest path in H-free graphs. In: Cao, Y., Cheng, S., Li, M. (eds.) 31st International Symposium on Algorithms and Computation, ISAAC 2020, 14–18 December 2020, Hong Kong, China (Virtual Conference). LIPIcs, vol. 181, pp. 22:1–22:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ISAAC.2020.22

  21. Levin, A., Paulusma, D., Woeginger, G.J.: The computational complexity of graph contractions I: polynomially solvable and NP-complete cases. Networks 51(3), 178–189 (2008). https://doi.org/10.1002/net.20214

    Article  MathSciNet  MATH  Google Scholar 

  22. Martin, B., Paulusma, D.: The computational complexity of disconnected cut and \(2K_2\)-partition. J. Comb. Theory Ser. B 111, 17–37 (2015). https://doi.org/10.1016/j.jctb.2014.09.002

    Article  MathSciNet  MATH  Google Scholar 

  23. Martin, B., Paulusma, D., van Leeuwen, E.J.: Disconnected cuts in claw-free graphs. J. Comput. Syst. Sci. 113, 60–75 (2020). https://doi.org/10.1016/j.jcss.2020.04.005

    Article  MathSciNet  MATH  Google Scholar 

  24. Robertson, N., Seymour, P.D.: Graph Minors. XIII. The Disjoint Paths Problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995). https://doi.org/10.1006/jctb.1995.1006

    Article  MathSciNet  MATH  Google Scholar 

  25. Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings of the 10th Annual ACM Symposium on Theory of Computing, 1–3 May 1978, San Diego, California, USA. pp. 216–226. ACM (1978). https://doi.org/10.1145/800133.804350

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafullkumar Tale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krithika, R., Sharma, R., Tale, P. (2022). The Complexity of Contracting Bipartite Graphs into Small Cycles. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15914-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15913-8

  • Online ISBN: 978-3-031-15914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics