Abstract
The computational complexity of the graph isomorphism problem is considered to be a major open problem in theoretical computer science. It is known that testing isomorphism of chordal graphs is polynomial-time equivalent to the general graph isomorphism problem. Every chordal graph can be represented as the intersection graph of some subtrees of a representing tree, and the leafage of a chordal graph is defined to be the minimum number of leaves in a representing tree for it. We prove that chordal graph isomorphism is fixed parameter tractable with leafage as parameter.
The full version of this paper is available on arXiv [2]. Roman Nedela was supported by GAČR 20-15576S and APVV-19-0308. Peter Zeman was supported by the Swiss National Science Foundation project PP00P2-202667. While at Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Peter Zeman was supported by GAČR 20-15576S.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Note that the composition \(fGf^{-1}\) is defined from left to right.
References
Agaoglu, D., Hlinený, P.: Isomorphism problem for \(S_d\)-graphs. In: Esparza, J., Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, Prague, Czech Republic, 24–28 August 2020. LIPIcs, vol. 170, pp. 4:1–4:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.MFCS.2020.4
Arvind, V., Nedela, R., Ponomarenko, I., Zeman, P.: Testing isomorphism of chordal graphs of bounded leafage is fixed-parameter tractable (2021). https://arxiv.org/abs/2107.10689
Arvind, V., Das, B., Köbler, J., Toda, S.: Colored hypergraph isomorphism is fixed parameter tractable. Algorithmica 71(1), 120–138 (2015). https://doi.org/10.1007/s00453-013-9787-y
Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June 2016, pp. 684–697. ACM (2016). https://doi.org/10.1145/2897518.2897542
Biro, M., Hujter, M., Tuza, Z.: Precoloring extension I. Interval graphs. Discret. Math. 100(1–3), 267–279 (1992)
Brand, N.: Isomorphisms of cyclic combinatorial objects. Discret. Math. 78(1-2), 73–81 (1989). https://doi.org/10.1016/0012-365X(89)90162-3
Çagirici, D.A., Hlinený, P.: Isomorphism testing for T-graphs in FPT. In: Mutzel, P., Rahman, M.S., Slamin (eds.) WALCOM 2022. LNCS, vol. 13174, pp. 239–250. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96731-4_20
Chaplick, S., Töpfer, M., Voborník, J., Zeman, P.: On H-topological intersection graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 167–179. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_13
Chaplick, S., Zeman, P.: Combinatorial problems on H-graphs. Electron. Notes Discret. Math. 61, 223–229 (2017). https://doi.org/10.1016/j.endm.2017.06.042
Chaplick, S., Zeman, P.: Isomorphism-completeness for H-graphs (2021). https://kam.mff.cuni.cz/pizet/gic.pdf
Chen, G., Ponomarenko, I.: Coherent Configurations. Central China Normal University Press, Wuhan (2019). http://www.pdmi.ras.ru/~inp/ccNOTES.pdf
Fomin, F.V., Golovach, P.A., Raymond, J.-F.: On the tractability of optimization problems on H-graphs. Algorithmica 82(9), 2432–2473 (2020). https://doi.org/10.1007/s00453-020-00692-9
Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Series B 16(1), 47–56 (1974). https://doi.org/10.1016/0095-8956(74)90094-X. https://www.sciencedirect.com/science/article/pii/009589567490094X
Grohe, M., Neuen, D., Schweitzer, P.: A faster isomorphism test for graphs of small degree. In: 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, 7–9 October 2018, pp. 89–100. IEEE Computer Society (2018). https://doi.org/10.1109/FOCS.2018.00018
Grohe, M., Wiebking, D., Neuen, D.: Isomorphism testing for graphs excluding small minors. In: 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, 16–19 November 2020, pp. 625–636. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00064
Habib, M., Stacho, J.: Polynomial-time algorithm for the leafage of chordal graphs. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 290–300. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0_27
Lin, I., McKee, T.A., West, D.B.: The leafage of a chordal graph. Discuss. Math. Graph Theory 18(1), 23–48 (1998). https://doi.org/10.7151/dmgt.1061
Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth. SIAM J. Comput. 46(1), 161–189 (2017). https://doi.org/10.1137/140999980
Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph isomorphism. J. ACM 26(2), 183–195 (1979). https://doi.org/10.1145/322123.322125
Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25(1), 42–65 (1982). https://doi.org/10.1016/0022-0000(82)90009-5
Neuen, D.: Hypergraph isomorphism for groups with restricted composition factors. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, Saarbrücken, Germany, 8–11 July 2020 (Virtual Conference). LIPIcs, vol. 168, pp. 88:1–88:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.88
Ponomarenko, I.N.: The isomorphism problem for classes of graphs closed under contraction. J. Sov. Math. 55(2), 1621–1643 (1991)
Ponomarenko, I.: Polynomial isomorphism algorithm for graphs which do not pinch to K\(_{3, g}\). J. Sov. Math. 34(4), 1819–1831 (1986)
Schweitzer, P., Wiebking, D.: A unifying method for the design of algorithms canonizing combinatorial objects. In: Charikar, M., Cohen, E. (eds.) Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, 23–26 June 2019, pp. 1247–1258. ACM (2019)
Stacho, J.: On 2-subcolourings of chordal graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 544–554. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0_47
Weisfeiler, B., Leman, A.: The reduction of a graph to canonical form and the algebra which appears therein. NTI Series 2, 12–16 (1968). https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf. The URL links to an English translation
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Arvind, V., Nedela, R., Ponomarenko, I., Zeman, P. (2022). Testing Isomorphism of Chordal Graphs of Bounded Leafage is Fixed-Parameter Tractable (Extended Abstract). In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-15914-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15913-8
Online ISBN: 978-3-031-15914-5
eBook Packages: Computer ScienceComputer Science (R0)