Abstract
A homomorphism \(\phi \) from a guest graph G to a host graph H is locally bijective, injective or surjective if for every \(u\in V(G)\), the restriction of \(\phi \) to the neighbourhood of u is bijective, injective or surjective, respectively. The corresponding decision problems, LBHom, LIHom and LSHom, are well studied both on general graphs and on special graph classes. We prove a number of new \(\textsf{FPT}\), \(\textsf{W}\)[1]-hard and para-\(\textsf{NP}\)-complete results by considering a hierarchy of parameters of the guest graph G. For our \(\textsf{FPT}\) results, we do this through the development of a new algorithmic framework that involves a general ILP model. To illustrate the applicability of the new framework, we also use it to prove \(\textsf{FPT}\) results for the Role Assignment problem, which originates from social network theory and is closely related to locally surjective homomorphisms.
The second and fourth authors acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC, project EP/V00252X/1).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abello, J., Fellows, M.R., Stillwell, J.: On the complexity and combinatorics of covering finite complexes. Australas. J. Comb. 4, 103–112 (1991)
Angluin, D.: Local and global properties in networks of processors (extended abstract). Proc. STOC 1980, 82–93 (1980)
Angluin, D., Gardiner, A.: Finite common coverings of pairs of regular graphs. J. Comb. Theory Ser. B 30, 184–187 (1981)
Biggs, N.J.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974)
Biggs, N.J.: Constructing \(5\)-arc transitive cubic graphs. J. Lond. Math. Soc. II(26), 193–200 (1982)
Bílka, O., Lidický, B., Tesař, M.: Locally injective homomorphism to the simple weight graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 471–482. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20877-5_46
Bodlaender, H.L.: The classification of coverings of processor networks. J. Parallel Distrib. Comput. 6, 166–182 (1989)
Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18, 238–255 (1995)
Bok, J., Fiala, J., Hlinený, P., Jedlicková, N., Kratochvíl, J.: Computational complexity of covering multigraphs with semi-edges: small cases. In: Proceedings of MFCS 2021. LIPIcs, vol. 202, pp. 21:1–21:15 (2021)
Chalopin, J.: Local computations on closed unlabelled edges: the election problem and the naming problem. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 82–91. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30577-4_11
Chalopin, J., Métivier, Y., Zielonka, W.: Local computations in graphs: the case of cellular edge local computations. Fund. Inform. 74, 85–114 (2006)
Chalopin, J., Paulusma, D.: Graph labelings derived from models in distributed computing: a complete complexity classification. Networks 58, 207–231 (2011)
Chalopin, J., Paulusma, D.: Packing bipartite graphs with covers of complete bipartite graphs. Discret. Appl. Math. 168, 40–50 (2014)
Chaplick, S., Fiala, J., van ’t Hof, P., Paulusma, D., Tesař, M.: Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree. Theor. Comput. Sci. 590, 86–95 (2015)
Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theoret. Comput. Sci. 239, 211–229 (2000)
Dourado, M.C.: Computing role assignments of split graphs. Theoret. Comput. Sci. 635, 74–84 (2016)
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theoret. Comput. Sci. 141, 109–131 (1995)
Drange, P.G., Dregi, M.S., van ’t Hof, P.: On the computational complexity of vertex integrity and component order connectivity. Algorithmica 76, 1181–1202 (2016)
Dvorák, P., Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Solving integer linear programs with a small number of global variables and constraints. Proc. IJCAI 2017, 607–613 (2017)
Everett, M.G., Borgatti, S.P.: Role colouring a graph. Math. Soc. Sci. 21, 183–188 (1991)
Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0_28
Fiala, J., Kloks, T., Kratochvíl, J.: Fixed-parameter complexity of lambda-labelings. Discret. Appl. Math. 113, 59–72 (2001)
Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discuss. Math. Graph Theory 22, 89–99 (2002)
Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms - structure, complexity, and applications. Comput. Sci. Rev. 2, 97–111 (2008)
Fiala, J., Kratochvíl, J., Pór, A.: On the computational complexity of partial covers of theta graphs. Discret. Appl. Math. 156, 1143–1149 (2008)
Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment problem. Theoret. Comput. Sci. 349, 67–81 (2005)
Fiala, J., Paulusma, D.: Comparing universal covers in polynomial time. Theory Comput. Syst. 46, 620–635 (2010)
Fiala, J., Tesař, M.: Dichotomy of the H-quasi-cover problem. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 310–321. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38536-0_27
Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)
Freuder, E.C.: Complexity of \(k\)-tree structured constraint satisfaction problems. Proc. AAAI 1990, 4–9 (1990)
Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54, 1:1-1:24 (2007)
Heggernes, P., van ’t Hof, P., Paulusma, D.: Computing role assignments of proper interval graphs in polynomial time. J. Discret. Algorithms 14, 173–188 (2012)
Hell, P., Nešetřil, J.: On the complexity of \(H\)-coloring. J. Comb. Theory Ser. B 48, 92–110 (1990)
Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004)
van ’t Hof, P., Paulusma, D., van Rooij, J.M.M.: Computing role assignments of chordal graphs. Theoret. Comput. Sci. 411, 3601–3613 (2010)
Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)
Kratochvíl, J.: Regular codes in regular graphs are difficult. Discret. Math. 133, 191–205 (1994)
Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. J. Comb. Theory Ser. B 71, 1–16 (1997)
Kratochvíl, J., Proskurowski, A., Telle, J.A.: On the complexity of graph covering problems. Nordic J. Comput. 5, 173–195 (1998)
Kratochvíl, J., Telle, J.A., Tesař, M.: Computational complexity of covering three-vertex multigraphs. Theoret. Comput. Sci. 609, 104–117 (2016)
Kristiansen, P., Telle, J.A.: Generalized H-coloring of graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 456–466. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40996-3_39
Kronegger, M., Ordyniak, S., Pfandler, A.: Backdoors to planning. Artif. Intell. 269, 49–75 (2019)
Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)
Lidický, B., Tesař, M.: Complexity of locally injective homomorphism to the theta graphs. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 326–336. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19222-7_33
Massey, W.S.: Algebraic Topology: An Introduction. Harcourt, Brace and World (1967)
Nešetřil, J.: Homomorphisms of derivative graphs. Discret. Math. 1, 257–268 (1971)
Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms, Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27875-4
Okrasa, K., Rzążewski, P.: Subexponential algorithms for variants of the homomorphism problem in string graphs. J. Comput. Syst. Sci. 109, 126–144 (2020)
Pandey, S., Sahlot, V.: Role coloring bipartite graphs. CoRR abs/2102.01124 (2021)
Pekeč, A., Roberts, F.S.: The role assignment model nearly fits most social networks. Math. Soc. Sci. 41, 275–293 (2001)
Purcell, C., Rombach, M.P.: On the complexity of role colouring planar graphs, trees and cographs. J. Discret. Algorithms 35, 1–8 (2015)
Purcell, C., Rombach, M.P.: Role colouring graphs in hereditary classes. Theoret. Comput. Sci. 876, 12–24 (2021)
Roberts, F.S., Sheng, L.: How hard is it to determine if a graph has a \(2\)-role assignment? Networks 37, 67–73 (2001)
White, D.R., Reitz, K.P.: Graph and semigroup homomorphisms on networks of relations. Soc. Netw. 5, 193–235 (1983)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Bulteau, L., Dabrowski, K.K., Köhler, N., Ordyniak, S., Paulusma, D. (2022). An Algorithmic Framework for Locally Constrained Homomorphisms. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-15914-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15913-8
Online ISBN: 978-3-031-15914-5
eBook Packages: Computer ScienceComputer Science (R0)