Skip to main content

A Novel Deep Learning Based Method for Doppler Spectral Curve Detection

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13529))

Included in the following conference series:

  • 2534 Accesses

Abstract

This paper proposes a novel doppler spectral curve detection method. First, U-net model is used to obtain the coarse segmentation map from the spectral image. Then, in order to solve the problem of curve deviation and curve defect, two components, curve correction and curve filling, which adopt deep regression and Generative adversarial networks, are devised for spectrum curve refining operation. These two outputs are fused for final segmentation. The experiments are validated on a private collected Spectral Doppler Spectrum dataset. The results demonstrate the proposed method has achieved satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  2. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  3. Okta, O., et al.: Attention U-net: learning where to look for the pancreas. arXiv:1804.03999 (2018)

  4. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on U-net (R2U-net) for medical image segmentation. arXiv:1802.06955 (2018)

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Chen, W., et al.: Prostate segmentation using 2D bridged U-net. In: 2019 International Joint Conference on Neural Networks, pp. 1–7 (2019)

    Google Scholar 

  7. Dalmı, M.U., et al.: Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med. Phys. 44(2), 533–546 (2017)

    Article  Google Scholar 

  8. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848 (2018)

    Google Scholar 

  9. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  10. Liu, H., Jiang, B., Xiao, Y., Yang, C.: Coherent semantic attention for image inpainting. In: 2019 IEEE/CVF International Conference on Computer Vision, pp. 4169–4178 (2019)

    Google Scholar 

  11. Zheng, C., Cham, T.J., Cai, J.: Pluralistic image completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  12. Xiong, W., Lin, Z., Yang, J., Lu, X., Barnes, C., Luo, J.: Foreground-aware image inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  13. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5967–5976(2017)

    Google Scholar 

  14. Xie, S., Tu, Z.: Holistically-nested edge detection. In: 2015 IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

  15. Liu, Y., Cheng, M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5872–5881 (2017)

    Google Scholar 

  16. He, J., Zhang, S., Yang, M., Shan, Y., Huang, T.: Bi-directional cascade network for perceptual edge detection. In: Proceedings of the IEEE Conference on Computer Vision and Pat-tern Recognition, pp. 3828–3837 (2019)

    Google Scholar 

  17. Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Bi-directional ConvLSTM U-net with densley connected convolutions. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop, pp. 406–415 (2019)

    Google Scholar 

  18. Lyu, C., Shu, H.: A two-stage cascade model with variational autoencoders and attention gates for MRI brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 435–447. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_39

    Chapter  Google Scholar 

  19. Miron, R., Albert, R., Breaban, M.: A two-stage atrous convolution neural network for brain tumor segmentation and survival prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 290–299. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_25

    Chapter  Google Scholar 

  20. Sun, J., Darbehani, F., Zaidi, M., Wang, B.: SAUNet: shape attentive u-net for interpretable medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 797–806. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_77

    Chapter  Google Scholar 

  21. Gao, Y., Zhou, M., Metaxas, D.N.: UTNet: a hybrid transformer architecture for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 61–71. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_6

    Chapter  Google Scholar 

  22. Li, Y., et al.: GT U-net: a U-net like group transformer network for tooth root segmentation. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) MLMI 2021. LNCS, vol. 12966, pp. 386–395. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_40

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitao Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, K., Ren, Y., Yin, L., Jin, Y. (2022). A Novel Deep Learning Based Method for Doppler Spectral Curve Detection. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13529. Springer, Cham. https://doi.org/10.1007/978-3-031-15919-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15919-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15918-3

  • Online ISBN: 978-3-031-15919-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics