Skip to main content

Multistage Diagnosis of Alzheimer’s Disease Based on Slice Attention Network

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

Alzheimer’s disease (AD) is a latent progressive neurodegenerative disease. Early detection can prevent further damage to patient’s health. We proposed a 3D abnormal perception depth residual network based on the squeeze and excitation module (RSE) and recurrent slice attention module (RSA). In our model, RSE captures the importance of different channels by integrating extrusion and excitation modules into residual blocks, while RSA aims to model 3D MRI images as slice sequences to capture the long-term dependence of different slices in different directions. Our model combine the context information of the abnormal area with local and spatial information. Experimental results show that the accuracy of our method is 87.5%, which is better than the most advanced model in terms of normal cognition (NC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI) and Alzheimer’s disease (AD) on the ADNI dataset. The CAM visualization results also show that our method can successfully highlight the most contributing regions of 3D MRI images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrol, A., Bhattarai, M., Fedorov, A., Du, Y., Plis, S., Calhoun, V., Alzheimer’s Disease Neuroimaging Initiative: Deep residual learning for neuroimaging: an application to predict progression to Alzheimer’s disease. J. Neurosci. Methods 339 (2020)

    Google Scholar 

  2. Ashburner, J., Friston, K.J.: Voxel-based morphometry-the methods. Neuroimage 11(6), 805–821 (2000)

    Article  Google Scholar 

  3. Backstrom, K., Nazari, M., Gu, Y.H., Jakola, A.S.: An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images, pp. 149–153 (2018)

    Google Scholar 

  4. Bahar-Fuchs, A., Clare, L., Woods, B.: Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer’s or vascular type: a review. Alzheimer’s Res. Ther. 5(4), 35 (2013)

    Article  Google Scholar 

  5. Cheng, B., Zhong, J., Jiang, X.: Multimodal ensemble classification of Alzheimer’s disease and mild cognitive impairment. J. Integr. Technol. (2013)

    Google Scholar 

  6. Cheng, D., Liu, M.: CNNs based multi-modality classification for ad diagnosis. In: International Congress on Image and Signal Processing, Biomedical Engineering and Informatics, pp. 1–5 (2017)

    Google Scholar 

  7. Cheng, D., Liu, M., Fu, J., Wang, Y.: Classification of MR brain images by combination of multi-CNNs for ad diagnosis. In: Ninth International Conference on Digital Image Processing (ICDIP 2017) (2017)

    Google Scholar 

  8. Dimitriadis, S.I., Liparas, D., Tsolaki, M.N., Alzheimer’s Disease Neuroimaging Initiative: Random forest feature selection, fusion and ensemble strategy: combining multiple morphological MRI measures to discriminate among healthy elderly, MCI, CMCI and Alzheimer’s disease patients: from the Alzheimer’s disease neuroimaging initiative (ADNI) database. J. Neurosci. Methods 14–23 (2017)

    Google Scholar 

  9. Li, F., Liu, M., Alzheimer’s Disease Neuroimaging Initiative: Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society (2018)

    Google Scholar 

  10. Fan, L., Cheng, D., Liu, M.: Alzheimer’s disease classification based on combination of multi-model convolutional networks, pp. 1–5 (2017)

    Google Scholar 

  11. Fan, Z., et al.: U-Net based analysis of MRI for Alzheimer’s disease diagnosis. Neural Comput. Appl. 1–13 (2021)

    Google Scholar 

  12. Faturrahman, M., Wasito, I., Hanifah, N., Mufidah, R.: Structural MRI classification for Alzheimer’s disease detection using deep belief network. In: 2017 11th International Conference on Information & Communication Technology and System (ICTS) (2018)

    Google Scholar 

  13. Forouzannezhad, P., Abbaspour, A., Li, C., Cabrerizo, M., Adjouadi, M.: A deep neural network approach for early diagnosis of mild cognitive impairment using multiple features. In: IEEE International Conference on Machine Learning and Applications, pp. 1341–1346 (2018)

    Google Scholar 

  14. Ghosal, P., Nandanwar, L., Kanchan, S., Bhadra, A., Nandi, D.: Brain tumor classification using ResNet-101 based squeeze and excitation deep neural network. In: 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP) (2019)

    Google Scholar 

  15. Guo, X., Yuan, Y.: Triple ANet: adaptive abnormal-aware attention network for WCE image classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 293–301. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_33

    Chapter  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). https://doi.org/10.1109/CVPR.2016.90

  17. Jie, H., Li, S., Gang, S., Albanie, S.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. PP(99) (2017)

    Google Scholar 

  18. Kim, J., Lee, B.: Automated discrimination of dementia spectrum disorders using extreme learning machine and structural T1 MRI features. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1990–1993 (2017)

    Google Scholar 

  19. Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y.: Residual and plain convolutional neural networks for 3D brain MRI classification. In: IEEE International Symposium on Biomedical Imaging 2017 (2017)

    Google Scholar 

  20. Li, Y., Fan, Y.: DeepSEED: 3D squeeze-and-excitation encoder-decoder convolutional neural networks for pulmonary nodule detection. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (2019)

    Google Scholar 

  21. Liu, M., Zhang, J., Adeli, E., Shen, D.: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Trans. Biomed. Eng. 66(5), 1195–1206 (2019)

    Article  Google Scholar 

  22. Liu, M., Zhang, D., Shen, D.: Hierarchical fusion of features and classifier decisions for Alzheimer’s disease diagnosis. Hum. Brain Mapp. 35(4), 1305–1319 (2014)

    Article  Google Scholar 

  23. Liu, S., Liu, S., Cai, W., Pujol, S., Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: IEEE International Symposium on Biomedical Imaging (2014)

    Google Scholar 

  24. Lu, D., Popuri, K., Ding, G.W., Balachandar, R., Beg, M.F., Initiative, A.D.N.: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci. Rep. 8(1), 5697 (2018)

    Article  Google Scholar 

  25. Maqsood, M., et al.: Transfer learning assisted classification and detection of Alzheimer’s disease stages using 3D MRI scans. Sensors (Basel, Switzerland) 19(11) (2019)

    Google Scholar 

  26. Nawaz, A., Anwar, S.M., Liaqat, R., Iqbal, J., Majid, M.: Deep convolutional neural network based classification of Alzheimer’s disease using MRI data (2021)

    Google Scholar 

  27. Payan, A., Montana, G.: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. Comput. Sci. (2015)

    Google Scholar 

  28. Ruiz, J., Mahmud, M., Modasshir, Md., Shamim Kaiser, M., Alzheimer’s Disease Neuroimaging Initiative: 3D DenseNet ensemble in 4-way classification of Alzheimer’s disease. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 85–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_8

  29. Liu, S., et al.: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease (2015)

    Google Scholar 

  30. Suk, H.I., Lee, S.W., Shen, D.: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101, 569–582 (2014)

    Article  Google Scholar 

  31. Telagarapu, P., Mohanty, B., Anandh, K.R.: Analysis of Alzheimer condition in T1-weighted MR images using texture features and K-NN classifier, pp. 331–334 (2018)

    Google Scholar 

  32. Vu, T.D., Yang, H.J., Nguyen, V.Q., Oh, A.R., Kim, M.S.: Multimodal learning using convolution neural network and sparse autoencoder. In: IEEE International Conference on Big Data and Smart Computing, pp. 309–312 (2017)

    Google Scholar 

  33. Wang, H., et al.: Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. Neurocomputing 333, 145–156 (2019)

    Article  Google Scholar 

  34. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  35. Wu, G., Kim, M., Sanroma, G., Wang, Q., Munsell, B.C., Shen, D.: Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition. Neuroimage 106, 34–46 (2015)

    Article  Google Scholar 

  36. Xin, Y., Qiang, W., Hong, D., Zou, J.: Spatial regularization for neural network and application in Alzheimer’s disease classification. In: 2016 Future Technologies Conference (FTC) (2017)

    Google Scholar 

  37. Zhang, H., et al.: RsaNet: recurrent slice-wise attention network for multiple sclerosis lesion segmentation (2020)

    Google Scholar 

  38. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Ming Own .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huo, X., Own, CM., Zhou, Y., Wu, N., Sun, J. (2022). Multistage Diagnosis of Alzheimer’s Disease Based on Slice Attention Network. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13529. Springer, Cham. https://doi.org/10.1007/978-3-031-15919-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15919-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15918-3

  • Online ISBN: 978-3-031-15919-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics