Skip to main content

Systematic Comparison of Incomplete-Supervision Approaches for Biomedical Image Classification

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

Deep learning based classification of biomedical images requires expensive manual annotation by experts. Incomplete-supervision approaches including active learning, pre-training, and semi-supervised learning have thus been developed to increase classification performance with a limited number of annotated images. In practice, a combination of these approaches is often used to reach the desired performance for biomedical images.

Most of these approaches are designed for natural images, which differ fundamentally from biomedical images in terms of color, contrast, image complexity, and class imbalance. In addition, it is not always clear which combination to use in practical cases.

We, therefore, analyzed the performance of combining seven active learning, three pre-training, and two semi-supervised methods on four exemplary biomedical image datasets covering various imaging modalities and resolutions. The results showed that the ImageNet (pre-training) in combination with pseudo-labeling (semi-supervised learning) dominates the best performing combinations, while no particular active learning algorithm prevailed. For three out of four datasets, this combination reached over 90% of the fully supervised results by only adding 25% of labeled data. An ablation study also showed that pre-training and semi-supervised learning contributed up to 25% increase in F1-score in each cycle. In contrast, active learning contributed less than 5% increase in each cycle.

Based on these results, we suggest employing the correct combination of pre-training and semi-supervised learning can be more efficient than active learning for biomedical image classification with limited annotated images. We believe that our study is an important step towards annotation-efficient model training for biomedical classification challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Data Availability Statement

All scripts and how to access and process the data can be found here: https://github.com/marrlab/Med-AL-SSL.

References

  1. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  2. Chen, T., Kornblith, S., Swersky, K., et al.: Big self-supervised models are strong semi-supervised learners (2020). http://arxiv.org/abs/2006.10029

  3. Raghu, M., Zhang, C., Kleinberg, J., et al.: Transfusion: understanding transfer learning for medical imaging. In: Wallach, H., Larochelle, H., Beygelzimer, A., et al. (eds.) Advances in Neural Information Processing Systems 32, pp. 3347–3357. Curran Associates Inc (2019)

    Google Scholar 

  4. Matek, C., Schwarz, S., Marr, C., Spiekermann, K.: A single-cell morphological dataset of leukocytes from AML patients and non-malignant controls [Data set]. Cancer Imaging Arch. (2019). https://doi.org/10.7937/tcia.2019.36f5o9ld

    Article  Google Scholar 

  5. Wang, X., Peng, Y., Lu, L., et al.: ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases (2017). http://arxiv.org/abs/1705.02315

  6. Blasi, T., Hennig, H., Summers, H.D., et al.: Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat. Commun. 7, 10256 (2016)

    Article  Google Scholar 

  7. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 4037–4058 (2020)

    Article  Google Scholar 

  8. Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2372–2379 (2009)

    Google Scholar 

  9. Chen, T., Kornblith, S., Norouzi, M., et al.: A simple framework for contrastive learning of visual representations (2020). http://arxiv.org/abs/2002.05709

  10. Zhou, Z.-H.: A brief introduction to weakly supervised learning. Natl. Sci. Rev. 5, 44–53 (2017)

    Article  Google Scholar 

  11. Sadafi, A., et al.: Multiclass deep active learning for detecting red blood cell subtypes in brightfield microscopy. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 685–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_76

    Chapter  Google Scholar 

  12. Combalia, M., Codella, N.C.F., Rotemberg, V., et al.: BCN20000: dermoscopic lesions in the wild (2019). http://arxiv.org/abs/1908.02288

  13. Holub, A., Perona, P., Burl, M.C.: Entropy-based active learning for object recognition. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2008)

    Google Scholar 

  14. Ren, P., Xiao, Y., Chang, X., et al.: A Survey of Deep Active Learning (2020). http://arxiv.org/abs/2009.00236

  15. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results (2017). http://arxiv.org/abs/1703.01780

  16. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018)

    Article  Google Scholar 

  17. van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Esteva, A., Kuprel, B., Novoa, R.A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature (2017)

    Google Scholar 

  19. Newell, A., Deng, J.: How Useful is Self-Supervised Pretraining for Visual Tasks? (2020). http://arxiv.org/abs/2003.14323

  20. Ducoffe, M., Precioso, F.: QBDC: query by dropout committee for training deep supervised architecture (2015). http://arxiv.org/abs/1511.06412

  21. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    MATH  Google Scholar 

  22. Sohn, K., Berthelot, D., Li, C.-L., et al.: FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence (2020). http://arxiv.org/abs/2001.07685

  23. Wei, K., Iyer, R., Bilmes, J.: Submodularity in data subset selection and active learning. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning, pp. 1954–1963 PMLR, Lille, France (2015)

    Google Scholar 

  24. Settles, B.: Active Learning Literature Survey, University of Wisconsin-Madison Department of Computer Sciences (2009)

    Google Scholar 

  25. Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Sci. Rep. 9, 19038 (2019)

    Article  Google Scholar 

  26. Culotta, A., McCallum, A.: Reducing labeling effort for structured prediction tasks. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9–13, 2005, Pittsburgh, Pennsylvania, USA, pp. 746–751. AAAI Press / The MIT Press (2005)

    Google Scholar 

  27. Sener, O., Savarese, S.: Active Learning for Convolutional Neural Networks: A Core-Set Approach (2017). http://arxiv.org/abs/1708.00489

  28. Rajpurkar, P., Irvin, J., Zhu, K., et al.: CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning (2017). http://arxiv.org/abs/1711.05225

  29. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  30. Ash, J.T., Zhang, C., Krishnamurthy, A., et al.: Deep batch active learning by diverse, uncertain gradient lower bounds (2019). http://arxiv.org/abs/1906.03671

  31. Eulenberg, P., Köhler, N., Blasi, T., et al.: Reconstructing cell cycle and disease progression using deep learning. Nat. Commun. 8, 463 (2017)

    Article  Google Scholar 

  32. van Oord, A,D., Li, Y., Vinyals, O.: Representation Learning with Contrastive Predictive Coding (2018). http://arxiv.org/abs/1807.03748

  33. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 93–102 (2019)

    Google Scholar 

  34. Matek, C., Schwarz, S., Spiekermann, K., et al.: Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nat. Mach. Intell. 1, 538–544 (2019). https://doi.org/10.1038/s42256-019-0101-9

    Article  Google Scholar 

  35. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013). https://doi.org/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  36. Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G., et al.: GLISTER: generalization based data subset selection for efficient and robust learning (2020). http://arxiv.org/abs/2012.10630

  37. APTOS 2019 Blindness Detection. https://www.kaggle.com/c/aptos2019-blindness-detection/

  38. Zhou, J., Sun, S.: Improved margin sampling for active learning. In: Li, S., Liu, C., Wang, Y. (eds.) CCPR 2014. CCIS, vol. 483, pp. 120–129. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45646-0_13

    Chapter  Google Scholar 

  39. Codella, N.C.F., Gutman, D., Celebi, E.M., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (ISIC) (2017). http://arxiv.org/abs/1710.05006

  40. Gal, Y., Islam, R., Ghahramani, Z.: Deep bayesian active learning with image data (2017). http://arxiv.org/abs/1703.02910

  41. Ericsson, L., Gouk, H., Hospedales, T.M.: How well do self-supervised models transfer? (2020). http://arxiv.org/abs/2011.13377

  42. Taher, M.R.H., Haghighi, F., Feng, R., et al.: A Systematic Benchmarking Analysis of Transfer Learning for Medical Image Analysis (2021). https://doi.org/10.1007/978-3-030-87722-4_1, http://arxiv.org/abs/2108.05930

Download references

Acknowledgment

We thank Björn Menze, Tingying Peng, Christian Matek, Melanie Schulz, Rudolf Matthias Hehr, Lea Schuh, Valerio Lupperger, and Ario Sadafi (Munich) for discussions and for contributing their ideas.

Funding

SSB has received funding by F. Hoffmann-la Roche LTD and supported by the Helmholtz Association under the joint research school “Munich School for Data Science - MUDS”. CM has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No. 866411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Marr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shetab Boushehri, S., Qasim, A.B., Waibel, D., Schmich, F., Marr, C. (2022). Systematic Comparison of Incomplete-Supervision Approaches for Biomedical Image Classification. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13529. Springer, Cham. https://doi.org/10.1007/978-3-031-15919-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15919-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15918-3

  • Online ISBN: 978-3-031-15919-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics