Skip to main content

Addressing Contradiction Between Reconstruction and Correlation Maximization in Deep Canonical Correlation Autoencoders

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13529))

Included in the following conference series:

Abstract

Canonical correlation analysis (CCA) and its nonlinear extensions have shown promising performance in multi-view representation learning. One of the most representative methods is Deep Canonical Correlation Analysis Autoencoders (DCCAE), which combines CCA with a reconstruction loss to reserve more information in representations. However, the contradiction between reconstruction and correlation maximization hinders the optimization of them. Here we propose a multi-view representation learning method named Full Reconstruction based Deep Canonical Correlation Analysis (FR-DCCA), which not only addresses this contradiction but also enables the reconstructing and correlation maximization to benefit from each other. In FR-DCCA, Split Encoder models the information in each view as shared information and specific information; CCA layer maintains consistency through maximizing the canonical correlation between shared information of views; Full Reconstruction module guarantees completeness and complementarity by reconstructing each view with both the shared and specific information. In FR-DCCA, reconstructing and correlation maximization mutually improve each other and yield complete, compact, and discriminative view representations. Experiments and analysis on multiple datasets demonstrate: 1) FR-DCCA significantly outperforms the comparison methods. 2) FR-DCCA effectively addresses the contradiction between reconstruction and correlation maximization. To facilitate future research, we release the codes at https://github.com/FR-DCCA/FR-DCCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaho, S.: A kernel method for canonical correlation analysis. In: Proceedings of the International Meeting of the Psychometric Society, pp. 2639–2664 (2001)

    Google Scholar 

  2. Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis. In: Proceedings of the 30th International Conference on Machine Learning, pp. 1247–1255 (2013)

    Google Scholar 

  3. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2019). https://doi.org/10.1109/TPAMI.2018.2798607

    Article  Google Scholar 

  4. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100 (1998). https://doi.org/10.1145/279943.279962

  5. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011). https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  6. Chang, X., Dacheng, T., Chao, X.: A survey on multi-view learning (2013). https://doi.org/10.1109/TKDE.2018.2872063

  7. Fuglede, B., Topsoe, F.: Jensen-Shannon divergence and Hilbert space embedding. In: Proceedings of International Symposium on Information Theory, 2004, pp. 31- (2004). https://doi.org/10.1109/ISIT.2004.1365067

  8. Gao, Q., Lian, H., Wang, Q., Sun, G.: Cross-modal subspace clustering via deep canonical correlation analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3938–3945 (2020). https://doi.org/10.1609/aaai.v34i04.5808

  9. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004). https://doi.org/10.1162/0899766042321814

    Article  MATH  Google Scholar 

  10. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313, 454–455 (2013). https://doi.org/10.1126/science.1127647

    Article  MathSciNet  Google Scholar 

  11. Schölkopf, B.: Statistical learning and kernel methods. In: Della Riccia, G., Lenz, H.-J., Kruse, R. (eds.) Data Fusion and Perception. ICMS, vol. 431, pp. 3–24. Springer, Vienna (2001). https://doi.org/10.1007/978-3-7091-2580-9_1

    Chapter  Google Scholar 

  12. Jia, X., et al.: Semi-supervised multi-view deep discriminant representation learning. IEEE Trans. Pattern Anal. Mach. Intell. 43(7), 2496–2509 (2021). https://doi.org/10.1109/TPAMI.2020.2973634

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR 2015) (2010)

    Google Scholar 

  14. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  15. Li, Y., Yang, M., Zhang, Z.: A survey of multi-view representation learning. IEEE Trans. Knowl. Data Eng. 31, 1863–1883 (2018). https://doi.org/10.1109/TKDE.2018.2872063

    Article  Google Scholar 

  16. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  17. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, pp. 849–856 (2001)

    Google Scholar 

  18. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: Geometric graph convolutional networks. In: International Conference on Learning Representations (2020)

    Google Scholar 

  19. Sun, S.: A survey of multi-view machine learning. Neural Comput. Appl. 23, 2031–2038 (2013). https://doi.org/10.1007/s00521-013-1362-6

    Article  Google Scholar 

  20. Wan, Z., Zhang, C., Zhu, P.F., Hu, Q.: Multi-view information-bottleneck representation learning. In: AAAI (2021)

    Google Scholar 

  21. Wang, W., Arora, R., Livescu, K., Bilmes, J.: On deep multi-view representation learning. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 1083–1092 (2015)

    Google Scholar 

  22. Wang, W., Arora, R., Livescu, K., Bilmes, J.: Unsupervised learning of acoustic features via deep canonical correlation analysis. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 4590–4594 (2015). https://doi.org/10.1109/ICASSP.2015.7178840

  23. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? a new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009). https://doi.org/10.1109/MSP.2008.930649

    Article  Google Scholar 

  24. Yu, Y., Tang, S., Aizawa, K., Aizawa, A.: Category-based deep CCA for fine-grained venue discovery from multimodal data. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1250–1258 (2019). https://doi.org/10.1109/TNNLS.2018.2856253

    Article  MathSciNet  Google Scholar 

  25. Zhang, C., Cui, Y., Han, Z., Zhou, J.T., Fu, H., Hu, Q.: Deep partial multi-view learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 1 (2020). https://doi.org/10.1109/TPAMI.2020.3037734

  26. Zhou, T., Zhang, C., Peng, X., Bhaskar, H., Yang, J.: Dual shared-specific multiview subspace clustering. IEEE Trans. Cybern. 50(8), 3517–3530 (2020). https://doi.org/10.1109/TCYB.2019.2918495

    Article  Google Scholar 

  27. Zhu, W., Lu, J., Zhou, J.: Structured general and specific multi-view subspace clustering. Pattern Recogn. 93, 392–403 (2019). https://doi.org/10.1016/j.patcog.2019.05.005

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the NSFC Project under Grant No. 62176069 and 61933013, the Innovation Group of Guangdong Education Department under Grant No. 2020KCXTD014 and the 2019 Key Discipline project of Guangdong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yuan Jing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Q., Jia, X., Jing, XY. (2022). Addressing Contradiction Between Reconstruction and Correlation Maximization in Deep Canonical Correlation Autoencoders. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13529. Springer, Cham. https://doi.org/10.1007/978-3-031-15919-0_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15919-0_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15918-3

  • Online ISBN: 978-3-031-15919-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics