Skip to main content

Deep Graph and Sequence Representation Learning for Drug Response Prediction

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

Drug response prediction plays a crucial role in personalized medicine and drug discovery. Many deep neural networks have been proposed for better drug response prediction. However, these methods only represent drugs as strings or represent drugs as molecular graphs, failing to capture comprehensive information about drugs. To address this challenge, we propose a joint graph and sequence representation learning model for drug response prediction, called DGSDRP. We use convolutional neural networks (CNN) to obtain local chemical context information from the drug sequences and a fusion module based on CNN and Bi-LSTM to capture the features of cell lines. Furthermore, we use graph convolutional networks (GCN) to extract topological structure information from the molecular graphs. Finally, we concatenate all representations through several dense layers and end with a regression layer to predict the response value. Extensive experimental results show that our model outperforms the current state-of-the-art models in terms of RMSE and \(CC_p\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutchinson, L., DeVita, V.: The era of personalized medicine: back to basics. Nat. Rev. Clin. Oncol. 5, 623 (2008)

    Article  Google Scholar 

  2. Marquart, J., Chen, E.Y., Prasad, V.: Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. Jama Oncol. 4(8), 1093–1098 (2018)

    Article  Google Scholar 

  3. Weinstein, J.N., Collisson, E.A., Mills, G.B., et al.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45(10), 1113 (2013)

    Article  Google Scholar 

  4. Zhang, J., Baran, J., Cros, A., et al.: International cancer genome consortium data portal-a one-stop shop for cancer genomics data. Database (Oxford) Database(2011), bar026 (2011)

    Google Scholar 

  5. Yang, W., Jorge, S., Patricia, G., et al.: Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41(D1), D955–D961 (2012)

    Article  Google Scholar 

  6. Barretina, J., Caponigro, G., Stransky, N., et al.: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012)

    Article  Google Scholar 

  7. Shoemaker, R.: The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6, 813–823 (2006)

    Article  Google Scholar 

  8. Nguyen, T., Nguyen, G.T.T., Nguyen, T., Le, D.-H.: Graph convolutional networks for drug response prediction. IEEE ACM Trans. Comput. Biol. Bioinform. 19(1), 146–154 (2022)

    Article  Google Scholar 

  9. Liu, P., Li, H., Li, S., et al.: Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network. BMC Bioinform. 20(1), 408 (2019)

    Article  Google Scholar 

  10. Li, M., et al.: DeepDSC: a deep learning method to predict drug sensitivity of cancer cell lines. IEEE ACM Trans. Comput. Biol. Bioinform. 18(2), 575–582 (2019)

    Article  Google Scholar 

  11. Cortés-Ciriano, I., Bender, A.: KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images. J. Cheminform. 11(1), 1–16 (2019). https://doi.org/10.1186/s13321-019-0364-5

    Article  Google Scholar 

  12. Ding, M.Q., Chen, L., Cooper, G.F., Young, J.D., Lu, X.: Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics. Mol. Cancer Res. 16(2), 269–278 (2018)

    Article  Google Scholar 

  13. Rampášek, L., Hidru, D., Smirnov, P., Haibe-Kains, B., Goldenberg, A.: Dr.VAE: improving drug response prediction via modeling of drug perturbation effects. Bioinformatics 35(19), 3743–3751 (2019)

    Article  Google Scholar 

  14. Wang, Y., Fang, J., Chen, S.: Inferences of drug responses in cancer cells from cancer genomic features and compound chemical and therapeutic properties. Sci. Rep. 6, 32679 (2016)

    Article  Google Scholar 

  15. Rahman, R., Matlock, K., Ghosh, S., Pal, R.: Heterogeneity aware random forest for drug sensitivity prediction. Sci. Rep. 7(1), 11347 (2017)

    Article  Google Scholar 

  16. Zhang, N., Wang, H., Fang, Y., Wang, J., Zheng, X., Liu, X.S.: Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model. PLoS Comput. Biol. 11(9), e1004498 (2015)

    Google Scholar 

  17. Li, M., et al.: GraphDTA: predicting drug-target binding affinity with graph neural networks. Bioinformatics 37(8), 1140–1147 (2021)

    Article  Google Scholar 

  18. Zeng, Y., Chen, X., Luo, Y., et al.: Deep drug-target binding affinity prediction with multiple attention blocks. Briefings Bioinform. 22(5), bbab117 (2021)

    Google Scholar 

  19. Gonczarek, A., Tomczak, J.M., Zareba, S., Kaczmar, J., Dabrowski, P., Walczak, M.J.: Interaction prediction in structure-based virtual screening using deep learning. Comput. Biol. Med. 100, 253–258 (2018)

    Article  Google Scholar 

  20. Karimi, M., Wu, D., Wang, Z., Shen, Y.: DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 38(18), 3329–3338 (2019)

    Article  Google Scholar 

  21. Özt ürk, H., Özg ür, A., Ozkirimli, E.: DeepDTA: deep drug-target binding affinity prediction. Bioinformatics 34(17), i821–i829 (2018)

    Article  Google Scholar 

  22. Wang, L., You, Z.-H., Chen, X., Xia, S.-X., et al.: A computational-based method for predicting drug-target interactions by using stacked autoencoder deep neural network. J. Comput. Biol. 25(3), 361–373 (2018)

    Article  MathSciNet  Google Scholar 

  23. Ramsundar, B., Eastman, P., Walters, P.: Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More, vol. 1, 2nd edn. O’Reilly, New York (2019)

    Google Scholar 

  24. Kang, L., Ye, P., Li, Y., et al.: Convolutional neural networks for no-reference image quality assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014) (2014)

    Google Scholar 

  25. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of the International Conference on Learning Representations (ICLR 2017) (2017)

    Google Scholar 

  26. Elickovic, P.V., Cucurull, G., Casanova, A.: Graph attention networks. In: Proceedings of the International Conference on Learning Representations (ICLR 2018) (2018)

    Google Scholar 

  27. Xu, K., Hu, W., Leskovec, J.: How powerful are graph neural networks. In: Proceedings of the International Conference on Learning Representations (ICLR 2019) (2019)

    Google Scholar 

  28. Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 61972135), and the Natural Science Foundation of Heilongjiang Province in China (No. LH2020F043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Wei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, X., Liu, Y., Zhang, W. (2022). Deep Graph and Sequence Representation Learning for Drug Response Prediction. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13529. Springer, Cham. https://doi.org/10.1007/978-3-031-15919-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15919-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15918-3

  • Online ISBN: 978-3-031-15919-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics