Skip to main content

Pancreatic Image Augmentation Based on Local Region Texture Synthesis for Tumor Segmentation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

High-accuracy segmentation of lesions in pancreatic images is essential for computer-aided precision diagnosis and treatment. The segmentation accuracy of deep learning-based segmentation models depends on the number of annotated pancreatic tumor images. Due to the high cost of labeling, the size of the training set for segmentation models is usually small. This paper proposes an image augmentation model based on local region texture generation. For pancreas images (background) and tumor images (foreground) with ablated regions, the model can generate image textures for the remaining blank areas after combining the two images to obtain new samples. To improve the texture continuity between the tumor region and surrounding tissues in the generated image, this paper constructs a three-level loss function to constrain the training of the augmented model. Simulation experiments on the pancreatic tumor image set provided by the partner hospital show that the Dice coefficient of the segmentation model trained on the dataset augmented by the proposed model improves by 2.4% compared with the current optimal method when the number of real images is sparse, which proves its effectiveness and feasibility.

This work is supported in part by the National Natural Science Foundation of China (U20A20171, 61802347, 61972347, 62106225), and the Natural Science Foundation of Zhejiang Province (LY21F020027, LGF20H180002, LGG20F020017, LY20H18006, LSD19H180003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay, J., et al.: Cancer statistics for the year 2020: an overview. Int. J. Cancer 149, 778–789 (2021)

    Google Scholar 

  2. Sindhu, A., Radha, V.: Pancreatic tumour segmentation in recent medical imaging – an overview. In: Smys, S., Tavares, J.M.R.S., Balas, V.E., Iliyasu, A.M. (eds.) Computational Vision and Bio-Inspired Computing. AISC, vol. 1108, pp. 514–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37218-7_58

  3. Goodfellow, I.J., et al.: Generative adversarial networks. Adv. Neural. Inf. Process. Syst. 3, 2672–2680 (2014)

    Google Scholar 

  4. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019)

    Google Scholar 

  5. Bissoto, A., Valle, E., Avila, S.: GAN-based data augmentation and anonymization for skin-lesion analysis: a critical review. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1847–1856 (2021)

    Google Scholar 

  6. Chen, Y., et al.: Generative adversarial networks in medical image augmentation: a review. Comput. Biol. Med. 144, 105382 (2022)

    Google Scholar 

  7. Lin, C., et al.: Breast mass detection in mammograms via blending adversarial learning. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) Simulation and Synthesis in Medical Imaging. LNCS, vol. 11827, pp. 52–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_6

  8. Wu, E., Wu, K., Cox, D., Lotter, W.: Conditional infilling GANs for data augmentation in mammogram classification. In: Stoyanov, D., et al. (eds.) Image Analysis for Moving Organ, Breast, and Thoracic Images. LNCS, vol. 11040, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_11

  9. Guan, Q., et al.: Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN. Comput. Biol. Med. 145, 105444 (2022)

    Google Scholar 

  10. Xing, Y., et al.: Adversarial pulmonary pathology translation for pairwise chest X-ray data augmentation. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. LNCS, vol. 11769, pp. 757–765. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_84

  11. Yao, Q., Xiao, L., Liu, P., Zhou, S.K.: Label-free segmentation of COVID-19 lesions in lung CT. IEEE Trans. Med. Imaging 40, 2808–2819 (2021)

    Article  Google Scholar 

  12. Ambita, A.A.E., Boquio, E.N.V., Naval, P.C.: COViT-GAN: vision transformer for COVID-19 detection in CT scan images with self-attention GAN for data augmentation. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) Artificial Neural Networks and Machine Learning – ICANN 2021. LNCS, vol. 12892, pp. 587–598. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86340-1_47

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  14. Liu, Y., Jia, X., Shen, L., Ming, Z., Duan, J.: Local normalization based BN layer pruning. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. LNCS, vol. 11728, pp. 334–346. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30484-3_28

  15. Chen, C., Hammernik, K., Ouyang, C., Qin, C., Bai, W., Rueckert, D.: Cooperative training and latent space data augmentation for robust medical image segmentation. In: de Bruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. LNCS, vol. 12903, pp. 149–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_14

  16. Gilbert, A., Marciniak, M., Rodero, C., Lamata, P., Samset, E., Mcleod, K.: Generating synthetic labeled data from existing anatomical models: an example with echocardiography segmentation. IEEE Trans. Med. Imaging 40, 2783–2794 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiu Guan or Feng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, Z. et al. (2022). Pancreatic Image Augmentation Based on Local Region Texture Synthesis for Tumor Segmentation. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13530. Springer, Cham. https://doi.org/10.1007/978-3-031-15931-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15931-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15930-5

  • Online ISBN: 978-3-031-15931-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics