Skip to main content

Spatial-Temporal Attention Network for Crime Prediction with Adaptive Graph Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13530))

Included in the following conference series:

Abstract

It is important but challenging to accurately predict urban crimes. Existing studies rely on domain knowledge specific, pre-defined inter-dependency graphs using extra urban data and have many disadvantages. We propose a novel framework, AGL-STAN, to efficiently capture complex spatial-temporal correlations of urban crimes with higher prediction accuracy but without extra data. In AGL-STAN, we design an adaptive graph learning method to learn the inter-dependencies among communities, and a time-aware self-attention method to accurately model the influence of time-varying crime incidents with a multi-head attention mechanism. We demonstrate the superiority of AGL-STAN over the state-of-the-art methods through extensive experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chicago crime dataset (2022). https://data.cityofchicago.org/

  2. NYC crime dataset (2022). https://data.cityofnewyork.us/

  3. Anderson, D.A.: The aggregate cost of crime in the united states. J. Law Econ. 64(4), 857–885 (2021)

    Article  Google Scholar 

  4. Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recurrent network for traffic forecasting. NeurIPS 33, 17804–17815 (2020)

    Google Scholar 

  5. Chang, C.C., Lin, C.J.: LibSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  6. Chen, P., Yuan, H., Shu, X.: Forecasting crime using the ARIMA model. In: International Conference on Fuzzy Systems and Knowledge Discovery, pp. 627–630 (2008)

    Google Scholar 

  7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  8. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

    Article  Google Scholar 

  9. Gu, Y.: Attentive neural point processes for event forecasting. In: AAAI, pp. 7592–7600 (2021)

    Google Scholar 

  10. Huang, C., Zhang, C., Zhao, J., Wu, X., Yin, D., Chawla, N.: Mist: a multiview and multimodal spatial-temporal learning framework for citywide abnormal event forecasting. In: WWW, pp. 717–728 (2019)

    Google Scholar 

  11. Huang, C., Zhang, J., Zheng, Y., Chawla, N.V.: DeepCrime: attentive hierarchical recurrent networks for crime prediction. In: ACM CIKM, pp. 1423–1432 (2018)

    Google Scholar 

  12. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: CVPR, pp. 7482–7491 (2018)

    Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P., Tita, G.E.: Self-exciting point process modeling of crime. J. Am. Stat. Assoc. 106(493), 100–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. NVDRS: Linking data to save lives (2021). https://www.cdc.gov/violenceprevention/datasources/nvdrs/index.html

  16. Sun, J., et al.: CrimeForeCaster: crime prediction by exploiting the geographical neighborhoods’ spatiotemporal dependencies. In: ECML-PKDD, pp. 52–67 (2020)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  18. Wang, H., Kifer, D., Graif, C., Li, Z.: Crime rate inference with big data. In: ACM SIGKDD, pp. 635–644 (2016)

    Google Scholar 

  19. Wang, P., Mathieu, R., Ke, J., Cai, H.: Predicting criminal recidivism with support vector machine. In: International Conference on Management and Service Science, pp. 1–9 (2010)

    Google Scholar 

  20. Wang, Z., et al.: Spatio-temporal-categorical graph neural networks for fine-grained multi-incident co-prediction. In: ACM CIKM, pp. 2060–2069 (2021)

    Google Scholar 

  21. Zhang, M., Li, T., Li, Y., Hui, P.: Multi-view joint graph representation learning for urban region embedding. In: IJCAI, pp. 4431–4437 (2020)

    Google Scholar 

  22. Zhao, X., Tang, J.: Modeling temporal-spatial correlations for crime prediction. In: ACM CIKM, pp. 497–506 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Key R &D Program under Grant 2021YFC3300500-02, the National Key R &D Project (Grant No. SQ2021YFC3300088 and 2020AAA0104404) and the S &T Program of Hebei (Grant No. 20470301D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyong Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, M., Zhou, P., Tian, H., Liao, Y., Xie, H. (2022). Spatial-Temporal Attention Network for Crime Prediction with Adaptive Graph Learning. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13530. Springer, Cham. https://doi.org/10.1007/978-3-031-15931-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15931-2_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15930-5

  • Online ISBN: 978-3-031-15931-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics