Skip to main content

Weight-Aware Graph Contrastive Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13530))

Included in the following conference series:

Abstract

In contrastive learning, samples usually have different contributions to optimization. This inference applies to the specific downstream tasks of applying contrastive learning to graph learning. Nevertheless, the nodes, i.e., samples, are equally treated in the conventional graph contrastive learning approaches. To address such a problem and better model discriminative information from graphs, we propose a novel graph contrastive learning approach called Weight-Aware Graph Contrastive Learning (WA-GCL). WA-GCL first pairs up the node feature as positive and negative pairs. The weight factors of these pairs are then determined based on their similarities. WA-GCL utilizes a specific weight-aware loss to effectively and efficiently learn discriminative representations from the pairs with their corresponding weight factors. Empirically, the experiments across multiple datasets demonstrate that WA-GCL outperforms the state-of-the-art methods in graph contrastive learning tasks. Further experimental studies verified the effectiveness of different parts of WA-GCL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs with graphs. In: International Conference on Learning Representations (2018)

    Google Scholar 

  2. Bojchevski, A., Günnemann, S.: Deep gaussian embedding of graphs: Unsupervised inductive learning via ranking. arXiv preprint arXiv:1707.03815 (2017)

  3. Chuang, C.Y., Robinson, J., Yen-Chen, L., Torralba, A., Jegelka, S.: Debiased contrastive learning. arXiv preprint arXiv:2007.00224 (2020)

  4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural. Inf. Process. Syst. 29, 3844–3852 (2016)

    Google Scholar 

  5. Duvenaud, D., et al.: Convolutional networks on graphs for learning molecular fingerprints. arXiv preprint arXiv:1509.09292 (2015)

  6. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR (2020)

    Google Scholar 

  7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  8. Leman, A., Weisfeiler, B.: A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya 2(9), 12–16 (1968)

    Google Scholar 

  9. Peng, Z., et al.: Graph representation learning via graphical mutual information maximization. In: Proceedings of the Web Conference 2020, pp. 259–270 (2020)

    Google Scholar 

  10. Sanchez-Gonzalez, A., et al.: Graph networks as learnable physics engines for inference and control. In: International Conference on Machine Learning, pp. 4470–4479. PMLR (2018)

    Google Scholar 

  11. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  12. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  13. Sun, Y., Cheng, C., Zhang, Y., Zhang, C., Zheng, L., Wang, Z., Wei, Y.: Circle loss: a unified perspective of pair similarity optimization. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  14. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  15. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  16. Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. arXiv preprint arXiv:1809.10341 (2018)

  17. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. ICLR (Poster) 2(3), 4 (2019)

    Google Scholar 

  18. Wan, S., Pan, S., Yang, J., Gong, C.: Contrastive and generative graph convolutional networks for graph-based semi-supervised learning. arXiv preprint arXiv:2009.07111 (2020)

  19. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861–6871. PMLR (2019)

    Google Scholar 

  20. Xu, D., Cheng, W., Luo, D., Chen, H., Zhang, X.: Infogcl: Information-aware graph contrastive learning. Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  21. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  22. Xu, X., Feng, W., Jiang, Y., Xie, X., Sun, Z., Deng, Z.H.: Dynamically pruned message passing networks for large-scale knowledge graph reasoning. arXiv preprint arXiv:1909.11334 (2019)

  23. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 912–919 (2003)

    Google Scholar 

  24. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131 (2020)

  25. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwen Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, H., Li, J., Qiao, P., Zheng, C. (2022). Weight-Aware Graph Contrastive Learning. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13530. Springer, Cham. https://doi.org/10.1007/978-3-031-15931-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15931-2_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15930-5

  • Online ISBN: 978-3-031-15931-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics