Abstract
State-of-the-art recommender systems (RSs) generally try to improve the overall recommendation quality. However, users usually tend to explicitly filter the item set based on available categories, e.g., smartphone brands, movie genres. For this reason, an RS that can make this step automatically is likely to increase the user’s experience. This paper proposes a Conditioned Variational Autoencoder (C-VAE) for constrained top-N item recommendation where the recommended items must satisfy a given condition. The proposed model architecture is similar to a standard VAE in which a condition vector is fed into the encoder. The constrained ranking is learned during training thanks to a new reconstruction loss that takes the input condition into account. We show that our model generalizes the state-of-the-art Mult-VAE collaborative filtering model. Experimental results underline the potential of C-VAE in providing accurate recommendations under constraints. Finally, the performed analyses suggest that C-VAE can be used in other recommendation scenarios, such as context-aware recommendation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Context-Aware Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 191–226. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_6
Askari, B., Szlichta, J., Salehi-Abari, A.: Variational autoencoders for top-k recommendation with implicit feedback. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 2061–2065 (2021)
Carraro, T., Polato, M., Aiolli, F.: A look inside the black-box: towards the interpretability of conditioned variational autoencoder for collaborative filtering. In: Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization, pp. 233–236 (2020)
Chae, D.K., Kang, J.S., Kim, S.W., Lee, J.T.: Cfgan: a generic collaborative filtering framework based on generative adversarial networks. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. CIKM 2018, New York, NY, USA, pp. 137–146. Association for Computing Machinery (2018). https://doi.org/10.1145/3269206.3271743
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web. WWW 2017. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, pp. 173–182 (2017). https://doi.org/10.1145/3038912.3052569
Higgins, I., et al.: beta-vae: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272 (2008)
Iqbal, M., Aryafar, K., Anderton, T.: Style conditioned recommendations. In: Proceedings of the 13th ACM Conference on Recommender Systems. RecSys 2019, New York, NY, USA, pp. 128–136. Association for Computing Machinery (2019). https://doi.org/10.1145/3298689.3347007
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014 (2014)
Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_5
Li, X., She, J.: Collaborative variational autoencoder for recommender systems. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD 2017, New York, NY, USA, pp. 305–314. Association for Computing Machinery (2017). https://doi.org/10.1145/3097983.3098077
Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference. WWW 2018. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, pp. 689–698 (2018). https://doi.org/10.1145/3178876.3186150
Ning, X., Karypis, G.: Slim: sparse linear methods for top-n recommender systems. In: 2011 IEEE 11th International Conference on Data Mining, pp. 497–506 (2011)
Pagnoni, A., Liu, K., Li, S.: Conditional variational autoencoder for neural machine translation. ArXiv abs/1812.04405 (2018)
Polato, M., Aiolli, F.: Boolean kernels for collaborative filtering in top-n item recommendation. Neurocomput. 286(C), 214–225 (2018). https://doi.org/10.1016/j.neucom.2018.01.057
Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000 (2010)
Ricci, F., Rokach, L., Shapira, B.: Recommender Systems Handbook, 2nd edn. Springer, New York (2015). https://doi.org/10.1007/978-1-4899-7637-6
Shenbin, I., Alekseev, A., Tutubalina, E., Malykh, V., Nikolenko, S.I.: Recvae: a new variational autoencoder for top-n recommendations with implicit feedback. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 528–536 (2020)
Spagnuolo, C., et al.: Analyzing, exploring, and visualizing complex networks via hypergraphs using simplehypergraphs.jl. Internet Mathematics, April 2020. https://doi.org/10.24166/im.01.2020
Steck, H.: Embarrassingly shallow autoencoders for sparse data. In: The World Wide Web Conference. WWW 2019, New York, NY, USA, pp. 3251–3257. Association for Computing Machinery (2019). https://doi.org/10.1145/3308558.3313710
Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009 (2009). https://doi.org/10.1155/2009/421425
Wang, J., et al.: Irgan: a minimax game for unifying generative and discriminative information retrieval models. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR 2017, New York, NY, USA, pp. 515–524, Association for Computing Machinery (2017). https://doi.org/10.1145/3077136.3080786
Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-n recommender systems. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. WSDM 2016, New York, NY, USA, pp. 153–162. Association for Computing Machinery (2016). https://doi.org/10.1145/2835776.2835837
Wu, Y., Macdonald, C., Ounis, I.: A hybrid conditional variational autoencoder model for personalised top-n recommendation. In: Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval, pp. 89–96 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Carraro, T., Polato, M., Bergamin, L., Aiolli, F. (2022). Conditioned Variational Autoencoder for Top-N Item Recommendation. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13530. Springer, Cham. https://doi.org/10.1007/978-3-031-15931-2_64
Download citation
DOI: https://doi.org/10.1007/978-3-031-15931-2_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15930-5
Online ISBN: 978-3-031-15931-2
eBook Packages: Computer ScienceComputer Science (R0)