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Abstract. Transformer plays an increasingly important role in various computer 

vision areas and has made remarkable achievements in point cloud analysis. 

Since existing methods mainly focus on point-wise transformer, an adaptive 

channel-wise Transformer is proposed in this paper. Specifically, a channel en-

coding Transformer called Transformer Channel Encoder (TCE) is designed to 

encode the coordinate channel. It can encode coordinate channels by capturing 

the potential relationship between coordinates and features. The encoded chan-

nel can extract features with stronger representation ability. Compared with 

simply assigning attention weight to each channel, our method aims to encode 

the channel adaptively. Moreover, our method can be extended to other frame-

works to improve their preformance. Our network adopts the neighborhood 

search method of feature similarity semantic receptive fields to improve the per-

formance. Extensive experiments show that our method is superior to state-of-

the-art point cloud classification and segmentation methods on three benchmark 

datasets. 
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1 Introduction 

3D point cloud is widely used in many fields because it contains geometric 

information and can be simply represented. However, point clouds are point sets 

embedded in irregular 3D space, unlike images which are arranged on regular pixel 

grids. This makes direct processing of point clouds challenging. In order to meet this 

challenge, many methods have been proposed and can be roughly divided into three 

categories: voxel-based method, projection-based method and point-based method. 

Voxel-based method [1, 2] attempts to voxelize the 3D space so that the point 

cloud is distributed in an artificial regularized space. However, voxelization will lead 

to massive computation, and there is no point cloud distribution in many voxel grids, 

resulting in a waste of memory. 

Projection-based method [3, 4] maps 3D point clouds into 2D space so that 2D 

convolution can be implemented. This will cause the point cloud data to lose its 



2 

biggest advantage: structure information. At the same time, it will also bring a large 

amount of calculation.  

 

 
 

 

Fig. 1. The diagrams of point-wise transformer (top) and our channel-wise transformer (bot-

tom). 𝜓, 𝜑 and 𝛼 are feature transformations which implemented with MLPs or linear projec-

tions. 𝛽 indicates a relation function (e.g., subtraction) and produces an attention matrix. ⊙ 

means matrix multiplication and ⊗ means element-wise multiplication.   

PointNet [5] proposes a point-wise method which employs MLPs to extract 

features point by point, and finally uses global pooling to obtain global features. 

However, this method ignores the structure information in the process. Therefore, 

PointNet++ [6] which explores the local information aggregation method is proposed 

as an improvement work. Inspired by them, the follow-up works [7-11] which design 

convolution-like operations on point clouds to exploit spatial correlations is mainly 

this kind of method. 

Transformer has achieved excellent performance in various fields because of its 

powerful representation ability. It is especially suitable for point cloud processing, 

because the self-attention operator as the core of transformer network is essentially a 

set operator: it is invariant to permutation and cardinality of the input. The main 

operation of transformer is shown in Fig. 1 (top). The key is to learn an attention 

matrix through a relational function 𝛽. There are some point-wise transformer-based 

works in the field of point cloud for now [12, 13].  

Motivation Inspired by these point-wise works, a channel-wise transformer is 

proposed in this paper. Encoding the channel before feature extraction can improve 

the ability of feature representation. Generally, features are obtained from coordinates, 

so features can help encode coordinate channels. Specifically, a channel encoding 

mechanism called TCE is designed as shown in Fig. 1 (bottom). It can be seen that a 

channel attention matrix is obtained by learning the potential relationship between 

coordinate channels and feature channels, and then the feature channels are weighted. 

Subsequently, the coordinate channels are screened by a max-pooling in the direction 

of the channel to retain the most important channels. Finally, the features with 

channel filtering will be input into the standard graph convolution [7] network to deal 

with the tasks of classification and segmentation. In addition, in order to better 



3 

capture neighborhood information, feature similarity among points is used to replace 

fixed spatial location. The 𝑘  points with the greatest similarity are selected as 

neighbors.  

The main contributions of this paper include the following: 

⚫ A channel encoding mechanism called TCE is proposed. The contribution of 

channels can be determined by it which can learn the potential relationship 

between feature channels and coordinate channels. 

⚫ The designed TCE can be simply transplanted to other networks to enhance its 

performance. 

⚫ Extensive experiments over multiple domains and datasets are carried out and 

the experiment parameters and network structure are introduced in detail. The 

results show that our method achieves the state-of- the-art performance. 

2 Related Work 

2.1 Point-based method 

Permutation-invariant operators implemented by point-wise MLPs and pooling layers 

are proposed in PointNet [5] to aggregate features. PointNet++ [6] establishes a hier-

archical spatial structure which can increase sensitivity to the local geometric layout. 

This is a further improvement of PointNet. DGCNN [7] designs EdgeConv which can 

learn the point relationship as the edge of the graph in the high-dimensional feature 

space to capture similar local information. Moreover, DGCNN proposes to re-search 

the nearest neighbors of the central points on each layer in the feature space every 

time, so as to build the dynamic graph. RS-CNN [8] is committed to learn high-level 

geometric priors from low-level geometric information in 3D space. PAConv [9] 

further designs an adaptive convolution on spatial points. A dynamic convolution 

algorithm which can adaptively learn the weight coefficients from the point position 

is designed. AdaptConv [10] generates adaptive kernels according to their dynamical-

ly learned features. Our method also learns a dynamic attention matrix from the chan-

nel relationships between features and coordinates. Unlike the popular attention 

methods, our method achieves adaptability rather than simply assigning weights. 

 

2.2 Transformer-based method 

Transformer has achieved great success in natural language processing and image 

processing. Inspired by attention mechanism, SE block [14] is proposed for spatial 

encoding. A residual attention method [15] is proposed for image classification. Be-

cause it also has excellent applicability to point cloud processing, some works intro-

duce it into the field of point cloud. PCT [12] uses the inherent order invariance of 

Transformer to avoid defining the order of point cloud data, and carries out feature 

learning through attention mechanism. Point Transformer [13] designs a Point Trans-

former layer with strong representation ability for point cloud processing. This layer 

is invariant to permutation and cardinality, so it is naturally suitable for point cloud 

tasks. They are point-wise methods and achieve great results. In contrast, a channel-
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wise transformer comes up in this paper. The popular transformer has been improved 

to meet the needs of operation on the channel. 

3 Method 

In this section, the design of TCE is introduced in detail in Sec. 3.1. Then the differ-

ence between our method and point-wise transformer is discussed. Finally, our net-

work structure on different point cloud processing tasks is shown in Sec. 3.2. 

 

3.1 TCE 

Suppose 𝑋 = {𝑥𝑖  |𝑖 = 1 , 2 , . . . , 𝑁} ∈ ℝ𝑁×3  represents a point cloud with corresponding 

features 𝐹 = {𝑓𝑖  |𝑖 = 1 , 2 , . . . 𝑁} ∈ ℝ𝑁×𝐶 . Here, 𝑁 is the number of points and 𝐶 is the 

number of channels. 𝒩(𝑥𝑖) means the neighbor set of 𝑥𝑖 . The process of TCE is 

shown in Fig. 2. Following the terminology in PCT [12], let 𝑄, 𝐾 and 𝑉 be the query, 

key and value matrices respectively. They are defined as: 

 

 𝑄 = (𝑥𝑖  , 𝑥𝑗  − 𝑥𝑖), (1) 

 𝐾 = 𝑀𝐿𝑃(𝑓𝑖  , 𝑓𝑗  − 𝑓𝑖), (2) 

 𝑉 = 𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝑀 𝐿 𝑃1  (𝐾) , . . . , 𝑀 𝐿 𝑃𝐶  (𝐾)). (3) 

 

Unlike the popular transformer, 𝑄 is obtained directly from coordinate without any 

linear transformation. This is because removing this part of the linear transformation 

has little effect on the results and can reduce the computation cost. 𝐾 is derived from 

feature, not from coordinate. This is because the channel attention matrix needs to be 

learned from the channel relationship between feature and coordinate. Since only the 

coordinates are used as the original input of the network, 𝐾 in the first layer is also 

derived from coordinates, and takes the output features of the first layer as the input in 

the second layer. The relationship is the contribution of each channel of coordinate to 

each channel of feature. This process can be expressed as: 

 

 𝐴 = 𝑄 ⊗ 𝐾𝑇, (4) 

 

where 𝐴 indicates the channel attention matrix and ⊗ means element-wise multi-

plication rather than matrix dot-product. Eq. (4) represents the contribution of each 

channel of coordinate to each channel of feature. For example, the first column of 𝐴 is 

the contribution of each channel of coordinate to the first channel of feature. Hence, 

the Softmax operation is done in columns: 

 

 𝐴̃𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐴𝑖,𝑗) =
exp(𝐴𝑖,𝑗)

∑ exp(𝐴𝐶,𝑗)𝐶
. (5) 
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Fig. 2. The flow chart of TCE. The coordinates and features are set as the query and key matri-

ces respectively. The attention matrix is obtained by the corresponding relationship between 

coordinates and feature channel by channel because all features come from coordinates. The 

value matrix is obtained by mapping the key matrix. Because they are all based on key matrix, 

there is a response relationship between the value matrix and attention matrix. Element-wise 

multiplication is used to capture this response relationship. Then, max-pooling in the channel 

direction is used to filter out the strongest response as the encoded channel. Finally, a 1*1 con-

volution is used to extract the features of the encoded channel as the input of the next layer. 

𝐴̃ is the final channel attention matrix. 𝑉 is generated by 𝐾 and it can produce a re-

sponse matrix 𝐵 with 𝐴̃: 

 

 𝐵 = 𝐴̃ ⊗ 𝑉. (6) 

 

Eq. (6) indicates that an excitation (𝑉) is applied to the attention matrix (𝐴̃) to ob-

tain the corresponding response. The elements in 𝐵 represent the strength of the cor-

responding response. Its significance is to use feature channels to test the contribution 

learned from feature channels and coordinate channels. The greater the contribution, 

the stronger the response. Channel with the strongest response of each column is pre-

served as the new coordinate channels: 

 

 𝐵̃𝑗 = max
𝑖∈𝐶

𝐵𝑖,𝑗. (7) 

 

Here, max
𝑖∈𝐶

( ) indicates max-pooling in the channel direction. 𝐵̃ is the encoded 

new coordinate channel and each of its channels has the greatest contribution to fea-

ture. Then a 1*1 convolution is applied to extract feature as the input to the next layer: 

 

 𝑓𝑖
′ = 𝒜 (𝐶 𝑜 𝑛 𝑣 (𝐵̃𝑗) , ∀ 𝑥𝑗  ∈ 𝒩 (𝑥𝑖)), (8) 

 

where 𝐶𝑜𝑛𝑣 means 1*1 convolution and 𝒜 means the aggregate function. In particu-

lar, since our method is to encode the channel, the position coding is omitted. 

Our method is very different from the point-wise transformer. Our channel atten-

tion matrix is obtained through the relationship between coordinate and feature, not 

the coordinate itself. Coordinate is input and feature is target and the channel attention 

matrix essentially captures the relationship between input channels and target chan-

nels. 𝑉 is generated by 𝐾 and is essentially a test matrix which checks the channel 

attention matrix. 
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3.2 Network Architecture 

Our main idea is to use TCE for channel encoding, and then send the encoded 

channels to graph convolution neural network for feature extraction. Thus, the 

network architecture can be mainly divided into two parts: channel encoding layer 

and feature extraction layer. As shown in Fig. 3, the channel encoding has two layers 

which is a unified design in classification and segmentation networks. In the feature 

extraction layers, standard graph convolution [7] is adopted. This is to verify the 

performance improvement brought by embedding our method into other networks. 

There are two feature extraction layers in the classification network and three in the 

segmentation network. Through the dual feature similarity method, the receptive field 

is expanded and the dynamic graph is built. 

In the classification network, pooling and interpolation are not designed. The 

output of the second channel encoding layer and the two feature extraction layers is 

concatenated. Feature similarity is used to select neighborhood rather than k-nearest 

neighbors (KNN) or ball query. Specifically, the feature distance is calculated instead 

of the coordinate distance, and the nearest 𝑘 points are selected as neighbors.  

Different from the classification network, the segmentation network adopts 

pooling and interpolation. The farthest point sampling algorithm (FPS) is used to 

down sample the point cloud, and a rough map is established on the sampling points 

according to the feature similarity. 

 

 

Fig. 3. Classification and segmentation network structure. Our network consists of two channel 

coding layers with TCE. This is the general part of classification and segmentation. Standard 

graph convolution Standard graph convolution is implemented for feature extraction. It is worth 

mentioning that the classification network has no down sampling. 

4 Experiments 

In order to verify the performance of our network and the effectiveness of TCE, suffi-

cient comparative experiments are carried out on ModelNet40 [16], ShapeNet [17] 

and ScanObjectNN [18]. After that, a series of ablation experiments and robustness 

experiments are designed to verify our method. 

 

4.1 Classification on ModelNet40 

ModelNet40 [16] contains 12,311 3D models, of which 9,843 models are used for 

training, and the remaining 2,468 models are used as test models. Like other papers, 
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each model is uniformly sampled 1024 points and normalized to a unit sphere. In 

addition, all points are enhanced by random anisotropic scaling in the range of [-0.66, 

1.5] and translation in the range of [-0.2, 0.2]. The main parameter settings are as 

follows: the rate of dropout is set to 50% in the last two fully-connected (FC) layers; 

batch normalization and LeakyReLU are applied on all layers; the SGD optimizer 

with momentum set to 0.9 is adopted; The initial learning rate is donated to 0.1 and is 

dropped to 0.001 by cosine annealing.  

Table 1 reports the results of the most advanced methods and our methods in order 

of results. For a clear comparison, the input data type and the number of points 

corresponding to each method are shown. Our method achieves the best performance 

with only 1k points as input. 

Table 1. Classification accuracy (%) on ModelNet40. 

Method Input Accuracy 

3D-GCN [19] 1k points 92.1 

PCNN [20] 1k points 92.3 

SpiderCNN [21] 5k points+normal 92.4 

PointConv [22] 1k points+normal 92.5 

PointCNN [11] 1k points 92.5 

PointASNL [23] 1k points 92.9 

DGCNN [7] 1k points 92.9 

Grid-GCN [24] 1k points 93.1 

PCT [12] 1k points 93.2 

AdaptConv [10] 1k points 93.4 

Our method 1k points 93.4 

 

4.2 Part Segmentation on ShapeNet 

ShapeNet [17] is employed to test the performance of our segmentation network. The 

dataset contains 16,881 shapes in 16 categories and a total of 50 parts for annotation. 

Each object is marked with 2-6 labels. The dataset provided by PointNet++ [6] is put 

in use as a benchmark and its experimental setting is followed as well. Each object 

has 2k points as the input, which is different from classification task. 

The quantitative comparisons with the state-of-the-art methods are shown in Table 

2. All methods are measured by the class mean IoU (mIoU) and instance mean IoU. 

To facilitate comparison, the results of instance mIoU are adopted to sort. It can be 

seen that our method has achieved satisfactory results on both class mIoU and in-

stance mIoU.  

Our segmentation results are displayed in Fig. 4 (second row). In order to more in-

tuitively reflect the advantages of our results, the ground truth (first row) and the dif-

ference between ours and the ground truth (third row) are displayed together. The red 

points indicate the wrong prediction, and the blue points indicate the correct predic-

tion. You can see that the proportion of red points is very small in most models. There 

are more red points in the motorbike than other models because it is the most complex 

model. 
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Table 2. Shape part segmentation results (%) on ShapeNet. 

Method Class mIoU Instance mIoU 

PointNet [5] 80.4 83.7 

PCNN [20] 81.8 85.1 

PointNet++ [6] 81.9 85.1 

3D-GCN [19] 82.1 85.1 

DGCNN [7] 82.3 85.2 

SpiderCNN [21] 81.7 85.3 

SPLATNet [25] 83.7 85.4 

PointConv [22] 82.8 85.7 

Our method 83.4 86.0 

 
   

 
   

    

Fig. 4. Segmentation results on ShapeNet. The ground truth (first row), our results (second 

row) and their difference (third row) are shown at the same time. The red points in the third row 

mean the wrong points. 

4.3 Classification on ScanObjectNN 

Since the above two experiments are carried out on the idealized datasets, Sca-

nObjectNN [18] is adopted to further evaluate the performance of our method. This 

dataset is obtained by scanning the real indoor scenes. The Hardest is a subset of Sca-

nObjectNN. The subset contains the real targets which are processed by translating, 

rotating (around the gravity axis), and scaling the ground truth bounding box. This 

makes the dataset closer to the complex situation of the real-world. 

The results are summarized in Table 3, and our method transcends all other 

methods. Compared with the most advanced method BGA-PN++ [18], our method is 
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improved by 1.4%. The result of SpiderCNN [21] decreased by 18.7% when the da-

taset is changed from ModelNet40 to the Hardest. AdaptConv [10] achieves 93.4% on 

ModelNet40, but decreases to 78.9% on the Hardest. Our method still performs well 

on the real-world dataset, which proves that our method has higher practical value.  

Table 3. Classification accuracy (%) on ScanObjectNN. 

Method Hardest 

PointNet [5] 68.2 

SpiderCNN [21] 73.7 

PointNet++ [6] 77.9 

RS-CNN [8] 78.0 

DGCNN [7] 78.1 

PointCNN [11] 78.5 

AdaptConv [10] 78.9 

BGA-DGCNN [18] 79.7 

BGA-PN++ [18] 80.2 

Our method 81.6 

 

4.4 Ablation Studies 

In this subsection, a series of experiments are designed to prove the effectiveness of 

our design.  

First of all, our core design TCE is replaced by Channel-wise Attention [26], 

Point-wise Attention [27] respectively. This is to prove that TCE is different from 

them and more effective. Besides, TCE is also replaced by standard graph convolu-

tion (GraphConv) in order to eliminate the influence of standard graph convolution on 

the experiment. Only the channel encoding part is replaced, and the network structure 

and parameter settings remain unchanged. This set of experiments is carried out on 

ShapeNet [17] and the results are shown in Table 4. By comparison, TCE performs 

better than other methods. 

Table 4. The comparison results (%) on ShapeNet. 

Ablations Class mIoU Instance mIoU 

GraphConv 81.9 85.3 

Point-wise Attention  78.1 83.3 

Channel-wise Attention 77.9 83.0 

TCE 83.4 86.0 

Table 5. The comparison results (%) on ModelNet40. 

Ablations Accuracy 

mean-pooling 92.7 

sum-pooling 92.5 

max-pooling 93.4 
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The design of TCE has a pooling operation in the channel direction as mentioned 

in Sec. 3.1. Table 5 compares the effects of different pooling methods on the results 

of classification. Max-pooling is obviously better than the other two methods because 

it plays a screening role and retains the most influential channels. 

 

4.5 Robustness Experiments  

In this subsection, the robustness of our method to sparse points on ModelNet40 [16] 

is further evaluated. Similarly, GraphConv and Channel-wise Attention [26] are used 

for comparison. All networks have 1024 points as the input during training, and 1024, 

512, 256 and 128 points are used as the inputs for testing respectively. Fig. 5 shows 

that our method outperforms the other two methods. 

 

Fig. 5. Robustness of different methods to point sparsity. 

In order to compare the complexity of our method with the previous method, Ta-

ble 6 lists some relevant results. From the table, it can be seen that our method 

achieves the best performance of 93.4 % overall accuracy and the model size is rela-

tively small. The latter half of our model adopts the module of DGCNN. It can be 

seen that our method has only 0.06M more parameters than it, but the performance is 

improved by 0.5%. 

Table 6. The number of parameters and overall accuracy of different methods 

Method #parameters Accuracy (%) 

PointNet [6] 3.5M 89.2 

PointNet++ [7] 1.48M 90.7 

DGCNN [8] 1.81M 92.9 

KPConv [20] 14.3M 92.9 

PCT [12] 2.88M 93.2 

Our method 1.87M 93.4 
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5 Conclusion 

In this paper, a channel-wise convolution called TCE is designed based on Trans-

former. It is different from the popular Transformer with self-attention mechanism. 

TCE encodes the coordinate channels by adaptively learning the relationships be-

tween feature channels and coordinate channels, and expands the coordinate channels. 

More expressive features can be extracted with the encoded channels. In addition, a 

dynamic graph construction method is designed to expand the receptive field. Suffi-

cient experiments on three datasets, especially on the real-world dataset, prove that 

our method achieves the state of the arts. 
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