Skip to main content

Adaptive Channel Encoding Transformer for Point Cloud Analysis

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

Transformer plays an increasingly important role in various computer vision areas and has made remarkable achievements in point cloud analysis. Since existing methods mainly focus on point-wise transformer, an adaptive channel-wise Transformer is proposed in this paper. Specifically, a channel encoding Transformer called Transformer Channel Encoder (TCE) is designed to encode the coordinate channel. It can encode coordinate channels by capturing the potential relationship between coordinates and features. The encoded channel can extract features with stronger representation ability. Compared with simply assigning attention weight to each channel, our method aims to encode the channel adaptively. Moreover, our method can be extended to other frameworks to improve their preformance. Our network adopts the neighborhood search method of feature similarity semantic receptive fields to improve the performance. Extensive experiments show that our method is superior to state-of-the-art point cloud classification and segmentation methods on three benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maturana, D., Scherer, S.: Voxnet: a 3d convolutional neural network for real-time object recognition. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 922–928, IEEE, Hamburg, Germany (2015)

    Google Scholar 

  2. Feng, Y., Zhang, Z., Zhao, X., Ji, R., Gao, Y.: Gvcnn: group-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 264–272, IEEE, Salt Lake City, UT, USA (2018)

    Google Scholar 

  3. Han, Z., et al.: Seqviews2seqlabels: learning 3d global features via aggregating sequential views by rnn with attention. IEEE Trans. Image Processing 28(2), 658–672 (2019)

    Article  MathSciNet  Google Scholar 

  4. Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3d point cloud processing. In: Proceedings of the European Conference on Computer Vision, pp. 105–122, Springer, Munich, Germany (2018) https://doi.org/10.1007/978-3-030-01234-2_7

  5. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660, IEEE, Honolulu, HI, USA (2017)

    Google Scholar 

  6. Qi, C.R., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5180, ACM, Long Beach California USA (2017)

    Google Scholar 

  7. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M., Solomon, M.: Dynamic graph cnn for learning on point clouds. ACM Trans. Graphics 38(5), 146:1–146:12 (2019)

    Google Scholar 

  8. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–10, IEEE, Long Beach, USA (2019)

    Google Scholar 

  9. Xu, M., Ding, R., Zhao, H., Qi, X.: Paconv: position adaptive convolution with dynamic kernel assembling on point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9621–9630, IEEE, Nashville, TN, USA (2021)

    Google Scholar 

  10. Zhou, H., Feng, Y., Fang, M., Wei, M., Qin, J., Lu, T.: Adaptive graph convolution for point cloud analysis. In: Proceedings of the IEEE International Conference on Computer Vision, IEEE, Montreal, Canada (2021)

    Google Scholar 

  11. Li, Y., Bu, R., Sun, M., Chen, B.: Pointcnn: convolution on x-transformed points. In: Advances in Neural Information Processing Systems, pp. 828–838, ACM, (2018)

    Google Scholar 

  12. Guo, M., Cai, J., Liu, Z., Mu, T., Martin, R., Hu, S.: Pct: point cloud transformer. Comput. Visual Media 7, 187–199 (2021)

    Article  Google Scholar 

  13. Zhao, H., Jiang, L., Jia, J., Torr, P., Koltun, V.: Point transformer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 134826–134840, IEEE, Nashville, TN, USA (2021)

    Google Scholar 

  14. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)

    Article  Google Scholar 

  15. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6458, IEEE, Honolulu, HI, USA (2017)

    Google Scholar 

  16. Wu, Z., et al.: 3d shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920, IEEE, Boston, MA, USA (2015)

    Google Scholar 

  17. Yi, L., et al.: A scalable active framework for region annotation in 3d shape collections. ACM Trans. Graphics 35(6), 1–12 (2016)

    Article  Google Scholar 

  18. Uy, A., Pham, H., Hua, S., Nguyen, T., Yeung, K.: Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1588–1597, IEEE, Seoul, Korea (South) (2019)

    Google Scholar 

  19. Lin, Z., Huang, S., Wang, Y.: Convolution in the cloud: learning deformable kernels in 3d graph convolution networks for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1797–1806, IEEE, Seattle, WA, USA (2020)

    Google Scholar 

  20. Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators. ACM Trans. Graphics 4(71), 1–14 (2018)

    Article  Google Scholar 

  21. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: Spidercnn: deep learning on point sets with parameterized convolutional filters. In: Proceedings of the European Conference on Computer Vision, pp. 90–105, Springer, Munich, Germany (2018) https://doi.org/10.1007/978-3-030-01237-3_6

  22. Wu, W., Qi, Z., Li, F.: Pointconv: deep convolutional networks on 3d point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9621–9630, IEEE, Long Beach, USA (2019)

    Google Scholar 

  23. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: Pointasnl: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5588–5597, IEEE, Seattle, WA, USA (2020)

    Google Scholar 

  24. Xu, Q., Sun, X., Wu, C., Wang, P., Neumann, U.: Grid-gcn for fast and scalable point cloud learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, WA, USA (2020)

    Google Scholar 

  25. Su, H., et al.: Splatnet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2530–2539, IEEE, Salt Lake City, UT, USA (2018)

    Google Scholar 

  26. Wang, L., Huang, Y., Hou, Y., Zhang, S., Shan, J.: Graph attention convolution for point cloud semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10296–10305, IEEE, Long Beach, USA (2019)

    Google Scholar 

  27. Verma, N., Boyer, E., Verbeek, J.: FeaStnet: feature-steered graph convolutions for 3d shape analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2598–2606, IEEE, Salt Lake City, UT, USA (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoquan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, G., Cao, H., Zhang, Y., Ma, Y., Wan, J., Xu, K. (2022). Adaptive Channel Encoding Transformer for Point Cloud Analysis. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13531. Springer, Cham. https://doi.org/10.1007/978-3-031-15934-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15934-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15933-6

  • Online ISBN: 978-3-031-15934-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics