Abstract
Spiking Neural Networks (SNNs) with spike-based computations and communications may be more energy-efficient than Artificial Neural Networks (ANNs) for embedded applications. However, SNNs have mostly been applied to image processing, although audio applications may better fit their temporal dynamics. We evaluate the accuracy and energy-efficiency of Leaky Integrate-and-Fire (LIF) models on spiking audio datasets compared to ANNs. We demonstrate that, for processing temporal sequences, the Current-based LIF (Cuba-LIF) outperforms the LIF. Moreover, gated recurrent networks have demonstrated superior accuracy than simple recurrent networks for such tasks. Therefore, we introduce SpikGRU, a gated version of the Cuba-LIF. SpikGRU achieves higher accuracy than other recurrent SNNs on the most difficult task studied in this work. The Cuba-LIF and SpikGRU reach state-of-the-art accuracy, only <1.1% below the accuracy of the best ANNs, while showing up to a 49x reduction in the number of operations compared to ANNs, due to the high spike sparsity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbott, L.: Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res. Bullet. 50(5), 303–304 (1999). https://doi.org/10.1016/S0361-9230(99)00161-6
Anumula, J., Neil, D., Delbruck, T., Liu, S.C.: Feature representations for neuromorphic audio spike streams. Front. Neurosci. 12 (2018). https://doi.org/10.3389/fnins.2018.00023
Bellec, G., Salaj, D., Subramoney, A., Legenstein, R.A., Maass, W.: Long short-term memory and learning-to-learn in networks of spiking neurons. In: Advances in Neural Information Processing Systems: NeurIPS, pp. 795–805 (2018)
Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994). https://doi.org/10.1109/72.279181
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Association for Computational Linguistics, Doha (2014). https://doi.org/10.3115/v1/D14-1179
Cramer, B., Stradmann, Y., Schemmel, J., Zenke, F.: The Heidelberg spiking data sets for the systematic evaluation of spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 1–14 (2020). https://doi.org/10.1109/TNNLS.2020.3044364
Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018). https://doi.org/10.1109/MM.2018.112130359
Han, B., Srinivasan, G., Roy, K.: RMP-SNN: residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13555–13564 (2020). https://doi.org/10.1109/CVPR42600.2020.01357
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Horowitz, M.: Computing’s energy problem (and what we can do about it). In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14 (2014). https://doi.org/10.1109/ISSCC.2014.6757323
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arxiv:1412.6980 (2014)
Le, Q.V., Jaitly, N., Hinton, G.E.: A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941 (2015)
Lichtsteiner, P., Posch, C., Delbruck, T.: A 128\(\times \) 128 120 db 15 \(\mu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43(2), 566–576 (2008). https://doi.org/10.1109/JSSC.2007.914337
Lotfi Rezaabad, A., Vishwanath, S.: Long short-term memory spiking networks and their applications. In: International Conference on Neuromorphic Systems 2020, pp. 1–9. ACM (2020). https://doi.org/10.1145/3407197.3407211
Neftci, E., Mostafa, H., Zenke, F.: Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Process. Magaz. 36, 51–63 (2019). https://doi.org/10.1109/MSP.2019.2931595
Pan, Z., Chua, Y., Wu, J., Zhang, M., Li, H., Ambikairajah, E.: An efficient and perceptually motivated auditory neural encoding and decoding algorithm for spiking neural networks. Front. Neurosci. 13 (2020). https://doi.org/10.3389/fnins.2019.01420
Perez-Nieves, N., Leung, V.C.H., Dragotti, P.L., Goodman, D.F.M.: Neural heterogeneity promotes robust learning. Nature Commun. 12(1), 5791 (2021). https://doi.org/10.1038/s41467-021-26022-3
Ponghiran, W., Roy, K.: Hybrid analog-spiking long short-term memory for energy efficient computing on edge devices. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 581–586 (2021). https://doi.org/10.23919/DATE51398.2021.9473953
Ravanelli, M., Brakel, P., Omologo, M., Bengio, Y.: Light gated recurrent units for speech recognition. IEEE Trans. Emerg. Topics Comput. Intell. 2(2), 92–102 (2018). https://doi.org/10.1109/TETCI.2017.2762739
Shrestha, A., et al.: A spike-based long short-term memory on a neurosynaptic processor. In: 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 631–637 (2017). https://doi.org/10.1109/ICCAD.2017.8203836
Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017). https://doi.org/10.1109/JPROC.2017.2761740
Yin, B., Corradi, F., Bohté, S.M.: Effective and efficient computation with multiple-timescale spiking recurrent neural networks. In: International Conference on Neuromorphic Systems 2020, pp. 1–8. ACM (2020). https://doi.org/10.1145/3407197.3407225
Yin, B., Corradi, F., Bohté, S.M.: Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks. Nat. Mach. Intell. 3(10), 905–913 (2021). https://doi.org/10.1038/s42256-021-00397-w
Acknowledgements
This work has been partially supported by MIAI @ Grenoble Alpes, (ANR-19-P3IA-0003).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dampfhoffer, M., Mesquida, T., Valentian, A., Anghel, L. (2022). Investigating Current-Based and Gating Approaches for Accurate and Energy-Efficient Spiking Recurrent Neural Networks. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13531. Springer, Cham. https://doi.org/10.1007/978-3-031-15934-3_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-15934-3_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15933-6
Online ISBN: 978-3-031-15934-3
eBook Packages: Computer ScienceComputer Science (R0)