Abstract
Image-to-image translation is an interesting and challenging application. At present, it has developed from single-domain to multi-domain and many other aspects. But losing content structure is still an inevitable problem, which is manifested in the details of the objects or the global features of the images. We propose a new framework named CoPrGAN to alleviate the lack of content. CoPrGAN focuses on the expressive ability of content and style in different dimensions. In this way, the model uses multiple dynamic paths between the content encoder and the decoder to transform domains while preserving content structure. The content structure we are concerned with is not just posture and location, but also birthmarks, hair color, environment, etc. Experiments are arranged in animal face change that focus on local details and seasonal change that focus on global information. Both the comparative experiments with state-of-the-art and the ablation experiments demonstrate the superiority of CoPrGAN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anokhin, I., et al.: High-resolution daytime translation without domain labels. In: CVPR, pp. 7488–7497 (2020)
Barzilay, N., Shalev, T.B., Giryes, R.: Miss GAN: a multi-illustrator style generative adversarial network for image to illustration translation. Pattern Recogn. Lett. 151, 140–147 (2021)
Chang, H.-Y., Wang, Z., Chuang, Y.-Y.: Domain-specific mappings for generative adversarial style transfer. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 573–589. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_34
Chen, J., Liu, G., Chen, X.: AnimeGAN: a novel lightweight GAN for photo animation. In: Li, K., Li, W., Wang, H., Liu, Y. (eds.) ISICA 2019. CCIS, vol. 1205, pp. 242–256. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5577-0_18
Chen, R., Chen, X., Ni, B., Ge, Y.: SimSwap: an efficient framework for high fidelity face swapping. In: ACM MM, pp. 2003–2011 (2020)
Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: CVPR, pp. 11030–11039 (2020)
Cho, W., Choi, S., Park, D.K., Shin, I., Choo, J.: Image-to-image translation via group-wise deep whitening-and-coloring transformation. In: CVPR, pp. 10639–10647 (2019)
Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR, pp. 8789–8797 (2018)
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: StarGAN V2: diverse image synthesis for multiple domains. In: CVPR, pp. 8188–8197 (2020)
Dong, H., Neekhara, P., Wu, C., Guo, Y.: Unsupervised image-to-image translation with generative adversarial networks. arXiv preprint arXiv:1701.02676 (2017)
Gabbay, A., Hoshen, Y.: Scaling-up disentanglement for image translation. In: ICCV, pp. 6783–6792 (2021)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS, vol. 30 (2017)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV, pp. 1501–1510 (2017)
Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: ECCV, pp. 172–189 (2018)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)
Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-Softmax. arXiv preprint arXiv:1611.01144 (2016)
Jeong, S., Lee, J., Sohn, K.: Multi-domain unsupervised image-to-image translation with appearance adaptive convolution. In: ICASSP, pp. 1750–1754. IEEE (2022)
Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: NeurIPS, vol. 29 (2016)
Kim, J., Kim, M., Kang, H., Lee, K.H.: U-GAT-IT: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. In: ICLR (2020)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2014)
Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: ECCV, pp. 35–51 (2018)
Li, B., et al.: DyStyle: dynamic neural network for multi-attribute-conditioned style editing. arXiv preprint arXiv:2109.10737 (2021)
Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature transforms. In: NeurIPS, vol. 30 (2017)
Liu, A.H., Liu, Y.C., Yeh, Y.Y., Wang, Y.C.F.: A unified feature disentangler for multi-domain image translation and manipulation. In: NeurIPS, vol. 31 (2018)
Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: ICCV, pp. 10551–10560 (2019)
Mao, Q., Lee, H.Y., Tseng, H.Y., Ma, S., Yang, M.H.: Mode seeking generative adversarial networks for diverse image synthesis. In: CVPR, pp. 1429–1437 (2019)
Mao, Q., Tseng, H.Y., Lee, H.Y., Huang, J.B., Ma, S., Yang, M.H.: Continuous and diverse image-to-image translation via signed attribute vectors. In: IJCV, pp. 1–33 (2022)
Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: ICCV, pp. 2794–2802 (2017)
Nguyen, T.P., Lathuiliére, S., Ricci, E.: Multi-domain image-to-image translation with adaptive inference graph. In: ICPR, pp. 5368–5375. IEEE (2021)
Veit, A., Belongie, S.: Convolutional networks with adaptive inference graphs. In: ECCV, pp. 3–18 (2018)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR, pp. 8798–8807 (2018)
Wu, P.W., Lin, Y.J., Chang, C.H., Chang, E.Y., Liao, S.W.: RelGAN: multi-domain image-to-image translation via relative attributes. In: ICCV, pp. 5914–5922 (2019)
Yang, G., Fei, N., Ding, M., Liu, G., Lu, Z., Xiang, T.: L2M-GAN: learning to manipulate latent space semantics for facial attribute editing. In: CVPR, pp. 2951–2960 (2021)
Yu, X., Chen, Y., Liu, S., Li, T., Li, G.: Multi-mapping image-to-image translation via learning disentanglement. In: NeurIPS, vol. 32 (2019)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)
Acknowledgements
We thank the reviewers for their constructive comments. And we thank predecessors in the field of I2I translation for their inspiring works.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yu, X., Zhou, G. (2022). CoPrGAN: Image-to-Image Translation via Content Preservation. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13531. Springer, Cham. https://doi.org/10.1007/978-3-031-15934-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-15934-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15933-6
Online ISBN: 978-3-031-15934-3
eBook Packages: Computer ScienceComputer Science (R0)